Arid Zone Research ›› 2024, Vol. 41 ›› Issue (7): 1228-1237.doi: 10.13866/j.azr.2024.07.14
• Ecology and Environment • Previous Articles Next Articles
ZHANG Shunxin(), WU Zihao, YAN Qingwu, LI Gui’e, MU Shouguo()
Received:
2023-11-02
Revised:
2024-06-17
Online:
2024-07-15
Published:
2024-08-01
ZHANG Shunxin, WU Zihao, YAN Qingwu, LI Gui’e, MU Shouguo. Spatiotemporal changes in the ecosystem carbon storage on the northern slope of the Tianshan Mountains and simulations based on the PLUS-InVEST model[J].Arid Zone Research, 2024, 41(7): 1228-1237.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Data sources"
数据类型 | 数据名称 | 分辨率 | 数据来源 |
---|---|---|---|
地形 | DEM | 30 m | 地理空间数据云( |
坡度 | 在ArcGIS中基于DEM数据,采用“坡度”工具获取 | ||
气候 | 年平均气温 | 1 km | 国家青藏高原科学数据中心( |
年平均降水 | |||
NDVI | 30 m | 科学数据银行( | |
经济 | 人口密度 | 1 km | WorldPop数据集( |
GDP | 中国科学院资源环境科学与数据中心( | ||
区位 | 到高速公路的距离 | 30 m | OSM数据经ArcGIS“欧氏距离”工具获取( |
到国道的距离 | |||
到省道的距离 | |||
到县道的距离 | |||
到铁路的距离 | |||
到河流的距离 | |||
土地利用数据 | 中国年度土地覆盖数据集( |
Tab. 2
Carbon density of different land use types on the northern slope of Tianshan Mountains /(t·km-2)"
土地利 用类型 | 地上碳密度 | 地下碳密度 | 土壤碳密度 | 死亡有机物碳密度 |
---|---|---|---|---|
耕地 | 51.79 | 61.49 | 7073.94 | 124.00 |
林地 | 551.67 | 162.86 | 9956.53 | 248.00 |
灌木 | 78.30 | 51.42 | 5895.74 | 80.00 |
草地 | 8.71 | 76.58 | 6975.63 | 22.00 |
水域 | 11.41 | 8.10 | 0.00 | 0.00 |
冰川/积雪 | 0.00 | 0.00 | 0.00 | 0.00 |
裸地 | 8.10 | 15.46 | 3559.78 | 0.00 |
建设用地 | 40.38 | 25.90 | 0.00 | 0.00 |
湿地 | 33.01 | 26.39 | 19640.14 | 0.00 |
Tab. 3
Carbon storage of different land use types on the northern slope of Tianshan Mountains from 1990 to 2020 /104 t"
土地利用类型 | 1990年 | 2000年 | 2010年 | 2020年 | 土地利用类型 | 1990年 | 2000年 | 2010年 | 2020年 |
---|---|---|---|---|---|---|---|---|---|
耕地 | 10442.75 | 11510.24 | 15543.89 | 16453.72 | 冰川/积雪 | 0.00 | 0.00 | 0.00 | 0.00 |
林地 | 2921.97 | 3667.97 | 4114.96 | 4492.31 | 裸地 | 22373.26 | 22179.95 | 20260.68 | 21359.94 |
灌木 | 0.30 | 0.04 | 0.02 | 0.18 | 建设用地 | 1.53 | 3.71 | 7.39 | 10.85 |
草地 | 46347.76 | 44970.54 | 43872.70 | 40359.76 | 湿地 | 0.87 | 0.84 | 0.85 | 1.06 |
水域 | 2.69 | 3.33 | 3.92 | 3.93 | 总计 | 82091.13 | 82336.62 | 83804.41 | 82681.75 |
Tab. 4
Prediction of land use type area under three scenarios in 2030 /km2"
土地利用类型 | 历史趋势情景 | 水资源保护情景 | 经济发展情景 |
---|---|---|---|
耕地 | 23376.13 | 23360.71 | 23357.68 |
林地 | 4433.79 | 4566.95 | 4433.28 |
灌木 | 0.36 | 0.45 | 0.44 |
草地 | 52969.71 | 52790.99 | 52898.10 |
水域 | 2019.50 | 2212.21 | 2013.50 |
冰川/积雪 | 2196.84 | 2118.95 | 2202.76 |
裸地 | 62061.04 | 61945.84 | 61998.42 |
建设用地 | 2078.90 | 2140.16 | 2232.11 |
湿地 | 0.64 | 0.64 | 0.64 |
Tab. 5
Carbon storage and changes (compared to 2020) under three scenarios /104 t"
土地利用类型 | 历史趋势情景 | 变化(较2020年) | 水资源保护情景 | 变化(较2020年) | 经济发展情景 | 变化(较2020年) |
---|---|---|---|---|---|---|
耕地 | 17090.80 | 637.09 | 17079.53 | 625.81 | 17077.31 | 623.59 |
林地 | 4841.28 | 348.96 | 4986.68 | 494.37 | 4840.72 | 348.41 |
灌木 | 0.22 | 0.05 | 0.28 | 0.10 | 0.27 | 0.09 |
草地 | 37518.04 | -2841.72 | 37391.45 | -2968.31 | 37467.32 | -2892.44 |
水域 | 3.94 | 0.01 | 4.32 | 0.38 | 3.93 | 0.00 |
冰川/积雪 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
裸地 | 22238.60 | 878.67 | 22197.32 | 837.39 | 22216.16 | 856.23 |
建设用地 | 13.78 | 2.93 | 14.18 | 3.34 | 14.79 | 3.95 |
湿地 | 1.26 | 0.20 | 1.26 | 0.20 | 1.26 | 0.20 |
总计 | 81707.92 | -973.81 | 81675.02 | -1006.72 | 81621.76 | -1059.97 |
[1] | Kotlarski S, Gobiet A, Morin S, et al. 21st Century alpine climate change[J]. Climate Dynamics, 2023, 60(1-2): 65-86. |
[2] | Vera C, Silvestri G, Liebmann B, et al. Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models[J]. Geophysical Research Letters, 2006, 33(13): L13707. |
[3] | 张俊峰, 张安录, 董捷. 武汉城市圈土地利用碳排放效应分析及因素分解研究[J]. 长江流域资源与环境, 2014, 23(5): 595-602. |
[Zhang Junfeng, Zhang Anlu, Dong Jie. Carbon emission effect of land use and influencing factors decomposition of carbon emission in Wuhan Urban Agglomeration[J]. Resources and Environment in the Yangtze Basin, 2014, 23(5): 595-602.] | |
[4] |
付超, 于贵瑞, 方华军, 等. 中国区域土地利用/覆被变化对陆地碳收支的影响[J]. 地理科学进展, 2012, 31(1): 88-96.
doi: 10.11820/dlkxjz.2012.01.012 |
[Fu Chao, Yu Guirui, Fang Huajun, et al. Effects of land use and cover change on terrestrial carbon balance of China[J]. Progress in Geography, 2012, 31(1): 88-96.]
doi: 10.11820/dlkxjz.2012.01.012 |
|
[5] |
陈广生, 田汉勤. 土地利用/覆盖变化对陆地生态系统碳循环的影响[J]. 植物生态学报, 2007, 31(2): 189-204.
doi: 10.17521/cjpe.2007.0024 |
[Chen Guangsheng, Tian Hanqin. Land use/cover change effects on carbon cycling in terrestrial ecosystems[J]. Journal of Plant Ecology, 2007, 31(2): 189-204.] | |
[6] | 韩楚翘, 郑江华, 王哲, 等. 基于PLUS-InVEST模型吐哈盆地陆地生态系统碳储量时空变化及多情景模拟[J]. 干旱区地理, 2024, 47(2): 260-269. |
[Han Chuqiao, Zheng Jianghua, Wang Zhe, et al. Spatiotemporal variation and multiscenario simulation of carbon storage in terrestrial ecosystems in the Turpan-Hami Basin based on PLUS-InVEST model[J]. Arid Land Geography, 2024, 47(2): 260-269.] | |
[7] | 田一豆, 赵先超. 基于Markov-PLUS模型的长株潭城市群建设用地扩张模拟及碳排放响应分析[J]. 生态学报, 2024, 44(1): 129-142. |
[Tian Yidou, Zhao Xianchao. Simulation of construction land expansion and carbon emission response analysis of Changsha-Zhuzhou-Xiangtan Urban Agglomeration based on Markov-PLUS model[J]. Acta Ecologica Sinica, 2024, 44(1): 129-142.] | |
[8] | 马晓哲, 王铮. 土地利用变化对区域碳源汇的影响研究进展[J]. 生态学报, 2015, 35(17): 5898-5907. |
[Ma Xiaozhe, Wang Zheng. Progress in the study on the impact of land-use change on regional carbon sources and sinks[J]. Acta Ecologica Sinica, 2015, 35(17): 5898-5907.] | |
[9] | 张长勤, 徐小琪, 吴坚. 基于系统动力学的土地利用变化研究——以池州市为例[J]. 山东农业大学学报(自然科学版), 2014, 45(1): 110-115. |
[Zhang Changqin, Xu Xiaoqi, Wu Jian. Study on variation of land using based on ssystem dynamics——Chizhou City taking as example[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2014, 45(1): 110-115.] | |
[10] | 吴大放, 刘艳艳, 王朝晖. 基于Logistic-CA的珠海市耕地变化机理分析[J]. 经济地理, 2014, 34(1): 140-147. |
[Wu Dafang, Liu Yanyan, Wang Zhaohui. Mechanism of cultivated land change in Zhuhai City based on a Logistic-CA model[J]. Economic Geography, 2014, 34(1): 140-147.] | |
[11] | 侯西勇, 常斌, 于信芳. 基于CA-Markov的河西走廊土地利用变化研究[J]. 农业工程学报, 2004, 20(5): 286-291. |
[Hou Xiyong, Chang Bin, Yu Xinfang. Land use change in Hexi corridor based on CA-Markov methods[J]. Transactions of the Chinese Society of Agricultural Engineering, 2004, 20(5): 286-291.] | |
[12] |
王旭, 马伯文, 李丹, 等. 基于FLUS模型的湖北省生态空间多情景模拟预测[J]. 自然资源学报, 2020, 35(1): 230-242.
doi: 10.31497/zrzyxb.20200119 |
[Wang Xu, Ma Bowen, Li Dan, et al. Multi-scenario simulation and prediction of ecological space in Hubei Province based on FLUS model[J]. Journal of Natural Resources, 2020, 35(1): 230-242.]
doi: 10.31497/zrzyxb.20200119 |
|
[13] | 李立, 胡睿柯, 李素红. 基于改进FLUS模型的北京市低碳土地利用情景模拟[J]. 自然资源遥感, 2023, 35(1): 81-89. |
[Li Li, Hu Ruike, Li Suhong. Simulations of the low-carbon land use scenarios of Beijing based on the improved FLUS model[J]. Remote Sensing for Natural Resources, 2023, 35(1): 81-89.] | |
[14] | 许小亮, 李鑫, 肖长江, 等. 基于CLUE-S模型的不同情景下区域土地利用布局优化[J]. 生态学报, 2016, 36(17): 5401-5410. |
[Xu Xiaoliang, Li Xin, Xiao Changjiang, et al. Land use layout optimization under different scenarios by using the CLUE-S model[J]. Acta Ecologica Sinica, 2016, 36(17): 5401-5410.] | |
[15] | 胡丰, 张艳, 郭宇, 等. 基于PLUS和InVEST模型的渭河流域土地利用与生境质量时空变化及预测[J]. 干旱区地理, 2022, 45(4): 1125-1136. |
[Hu Feng, Zhang Yan, Guo Yu, et al. Spatial and temporal changes in land use and habitat quality in the Weihe River Basin based on the PLUS and InVEST models and predictions[J]. Arid Land Geography, 2022, 45(4): 1125-1136.] | |
[16] | 林彤, 杨木壮, 吴大放, 等. 基于InVEST-PLUS模型的碳储量空间关联性及预测——以广东省为例[J]. 中国环境科学, 2022, 42(10): 4827-4839. |
[Lin Tong, Yang Muzhuang, Wu Dafang, et al. Spatial correlation and prediction of land use carbon storage based on the InVEST-PLUS model-A case study in Guangdong Province[J]. China Environmental Science, 2022, 42(10): 4827-4839.] | |
[17] | 于芝琳, 赵明松, 高迎凤, 等. 基于InVEST-PLUS模型的淮北市碳储量时空演变及预测[J]. 环境科学, 2024, 45(6): 3270-3283. |
[Yu Zhilin, Zhao Mingsong, Gao Yingfeng, et al. Spatio-temporal evolution and prediction of carbon storage in Huaibei City based on InVEST-PLUS Model[J]. Environmental Science, 2024, 45(6): 3270-3283.] | |
[18] | 汪勇政, 徐雅利, 余浩然. 基于PLUS-InVEST模型的安徽省碳储量时空变化预测[J]. 水土保持通报, 2023, 43(3): 277-289. |
[Wang Yongzheng, Xu Yali, Yu Haoran. Prediction of spatial and temporal changes of carbon stocks in Anhui Province based on PLUS-InVEST Model[J]. Bulletin of Soil and Water Conservation, 2023, 43(3): 277-289.] | |
[19] | 巩晟萱, 张玉虎, 李宇航. 基于PLUS-InVEST模型的京津冀碳储量变化及预测[J]. 干旱区资源与环境, 2023, 37(6): 20-28. |
[Gong Shengxuan, Zhang Yuhu, Li Yuhang. Spatio-temporal variation and prediction of carbon storage in Beijing-Tianjin-Hebei region: A PLUS-InVEST model approach[J]. Journal of Arid Land Resources and Environment, 2023, 37(6): 20-28.] | |
[20] | 胡佶熹, 勒先文, 王卫林, 等. 基于PLUS-InVEST模型的江西省生态系统碳储量时空演变与预测[J]. 环境科学, 2024, 45(6): 3284-3296. |
[Hu Jixi, Le Xianwen, Wang Weilin, et al. Temporal and spatial evolution and prediction of ecosystem carbon storage in Jiangxi Province based on PLUS-InVEST model[J]. Environmental Science, 2024, 45(6): 3284-3296.] | |
[21] | 孙欣欣, 薛建辉, 董丽娜. 基于PLUS模型和InVEST模型的南京市生态系统碳储量时空变化与预测[J]. 生态与农村环境学报, 2023, 39(1): 41-51. |
[Sun Xinxin, Xue Jianhui, Dong Lina. Spatiotemporal change and prediction of carbon storage in Nanjing ecosystem based on PLUS model and InVEST model[J]. Journal of Ecology and Rural Environment, 2023, 39(1): 41-51.] | |
[22] | 智菲, 周振宏, 赵铭, 等. 基于PLUS和InVEST模型的合肥市生态系统碳储量时空演变特征[J]. 水土保持学报, 2024, 38(2): 205-215. |
[Zhi Fei, Zhou Zhenhong, Zhao Ming, et al. Temporal and spatial evolution characteristics of carbon storage in Hefei ecosystem based on PLUS and InVEST models[J]. Journal of Soil and Water Conservation, 2024, 38(2): 205-215.] | |
[23] | 卢雅焱, 徐晓亮, 李基才, 等. 基于InVEST模型的新疆天山碳储量时空演变研究[J]. 干旱区研究, 2022, 39(6): 1896-1906. |
[Lu Yayan, Xu Xiaoliang, Li Jicai, et al. Research on the spatio-temporal variation of carbon storage in the Xinjiang Tianshan Mountains based on the InVEST model[J]. Arid Zone Research, 2022, 39(6): 1896-1906.] | |
[24] | 张楚强, 向洋, 方婷, 等. LUCC影响下太原市生态系统碳储量时空变化及预测[J]. 安全与环境工程, 2022, 29(6): 248-258. |
[Zhang Chuqiang, Xiang Yang, Fang Ting, et al. Spatio-temporal evolution and prediction of carbon storage in Taiyuan ecosystem under the influence of LUCC[J]. Safety and Environmental Engineering, 2022, 29(6): 248-258.] | |
[25] | 史名杰, 武红旗, 贾宏涛, 等. 基于MCE-CA-Markov和InVEST模型的伊犁谷地碳储量时空演变及预测[J]. 农业资源与环境学报, 2021, 38(6): 1010-1019. |
[Shi Mingjie, Wu Hongqi, Jia Hongtao, et al. Temporal and spatial evolution and prediction of carbon stocks in Yili Valley based on MCE-CA-Markov and InVEST models[J]. Journal of Agricultural Resources and Environment, 2021, 38(6): 1010-1019.] | |
[26] | 张杰, 李敏, 敖子强, 等. 中国西部干旱区土壤有机碳储量估算[J]. 干旱区资源与环境, 2018, 32(9): 132-137. |
[Zhang Jie, Li Min, Ao Ziqiang, et al. Estimation of soil organic carbon storage of terrestrial ecosystem in arid western China[J]. Journal of Arid Land Resources and Environment, 2018, 32(9): 132-137.] | |
[27] | Alam S A, Starr M, Clark B J F. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: A regional carbon sequestration study[J]. Journal of Arid Environments, 2013, 89: 67-76. |
[28] | 陈光水, 杨玉盛, 刘乐中, 等. 森林地下碳分配(TBCA)研究进展[J]. 亚热带资源与环境学报, 2007, 2(1): 34-42. |
[Chen Guangshui, Yang Yusheng, Liu Lezhong, et al. Research review on total belowground carbon allocation in forest ecosystems[J]. Journal of Subtropical Resources and Environment, 2007, 2(1): 34-42.] | |
[29] | Giardina C P, Ryan M G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature[J]. Nature, 2000, 404(6780): 858-861. |
[30] | Liang X, Guan Q, Clarke K C, et al. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China[J]. Computers Environment and Urban Systems, 2021, 85: 101569. |
[31] | Ling X, Hongwei W, Suhong L. The ecosystem service values simulation and driving force analysis based on land use/land cover: A case study in inland rivers in arid areas of the Aksu River Basin, China[J]. Ecological Indicators, 2022, 138: 108828. |
[32] |
孙毅中, 杨静, 宋书颖, 等. 多层次矢量元胞自动机建模及土地利用变化模拟[J]. 地理学报, 2020, 75(10): 2164-2179.
doi: 10.11821/dlxb202010009 |
[Sun Yizhong, Yang Jing, Song Shuying, et al. Modeling of multilevel vector cellular automata and its simulation of land use change[J]. Acta Geographica Sinica, 2020, 75(10): 2164-2179.]
doi: 10.11821/dlxb202010009 |
|
[33] | 李佳珂, 邵战林. 基于PLUS和InVEST模型的乌鲁木齐市碳储量时空演变与预测[J]. 干旱区研究, 2024, 41(3): 499-508. |
[Li Jiake, Shao Zhanlin. Spatiotemporal evolution and prediction of carbon stock in Urumqi City based on PLUS and InVEST models[J]. Arid Zone Research, 2024, 41(3): 499-508.] | |
[34] | 雒舒琪. 耦合PLUS-INVEST模型的多情景土地利用变化及其对碳储量影响研究[D]. 杨凌: 西北农林科技大学, 2023. |
[Luo Shuqi. Multi-scenario Land Use Change and Its Impact on Carbon Storage Based on Coupled Plus-Invest Model[D]. Yangling: Northwest A & F University, 2023.] | |
[35] | 杨潋威, 赵娟, 朱家田, 等. 基于PLUS和InVEST模型的西安市生态系统碳储量时空变化与预测[J]. 自然资源遥感, 2022, 34(4): 175-182. |
[Yang Lianwei, Zhao Juan, Zhu Jiatian, et al. Spatial-temporal change and prediction of carbon stock in the ecosystem of Xi’an based on PLUS and InVEST models[J]. Remote Sensing for Natural Resources, 2022, 34(4): 175-182.] | |
[36] |
Zhang R, Liang T, Guo J, et al. Grassland dynamics in response to climate change and human activities in Xinjiang from 2000 to 2014[J]. Scientific Reports, 2018, 8(1): 2888.
doi: 10.1038/s41598-018-21089-3 pmid: 29440664 |
[37] | 徐自为, 张智杰. 基于土地利用变更调查的2010—2016年新疆尉犁县生态系统碳储量时空变化[J]. 环境科学研究, 2018, 31(11): 1909-1917. |
[Xu Ziwei, Zhang Zhijie. Spatiotemporal variation of carbon storage in Yuli County during 2010-2016[J]. Research of Environmental Sciences, 2018, 31(11): 1909-1917.] | |
[38] | 陈宁, 辛存林, 唐道斌, 等. 中国西北地区多情景土地利用优化与碳储量评估[J]. 环境科学, 2023, 44(8): 4655-4665. |
[Chen Ning, Xin Cunlin, Tang Daobin, et al. Multi-scenario land use optimization and carbon storage assessment in Northwest China[J]. Environmental Science, 2023, 44(8): 4655-4665.] | |
[39] | Feng X, Fu B, Lu N, et al. How ecological restoration alters ecosystem services: An analysis of carbon sequestration in China’s Loess Plateau[J]. Scientific Reports, 2013, 3(1): 2846. |
[40] | 吴子豪, 闫庆武, 李桂娥. 资源枯竭型城市转型发展研究[M]. 徐州: 中国矿业大学出版社, 2023. |
[Wu Zihao, Yan Qingwu, Li Gui’e. Research on the Transformation and Development of Resource-Exhausted Cities[M]. Xuzhou: China University of Mining and Technology Press, 2023.] |
[1] | WU Zhaoqiao, LIN Fei, NIU Junjie, GENG Tianwei. Response of ecosystem service to land use pattern change in the Shanxi central urban agglomeration [J]. Arid Zone Research, 2024, 41(7): 1153-1166. |
[2] | LI Bingjie, FAN Zhitao, QU Zhicheng, YAO Shunyu, SU Xiashu, LIU Dongwei, WANG Lixin. Evaluation and prediction of ecosystem carbon storage in the Inner Mongolia section of the Yellow River Basin based on the InVEST-PLUS model [J]. Arid Zone Research, 2024, 41(7): 1217-1227. |
[3] | LI Peiyao, WANG Xinjun, XU Shixian, GAO Shenghan, XUE Zhixuan, HENG Rui. Spatiotemporal pattern of NEP in Aksu River Basin based on PLUS land use simulation [J]. Arid Zone Research, 2024, 41(6): 1059-1068. |
[4] | YAO Xiaochen, GAO Fan, HAN Fanghong, HE Bing. Land use intensity change and its influence on evapotranspiration in Aksu River Basin from 2000 to 2020 [J]. Arid Zone Research, 2024, 41(6): 951-963. |
[5] | GAO Yayu, SONG Yu, ZHAO Tinghong, GAO Jinfang, HE Wenbo, LI Zexia. Spatiotemporal evolution of water yield in the lower Malian River Basin [J]. Arid Zone Research, 2024, 41(5): 776-787. |
[6] | CHENG Xiaoyu, LYU Jiehua. Mechanism of climate influence on carbon storage in the Tarim River Basin and attribution under topographic differentiation [J]. Arid Zone Research, 2024, 41(5): 865-875. |
[7] | LIU Rulong, ZHAO Yuanyuan, CHEN Guoqing, CHI Wenfeng, LIU Zhengjia. Assessment of habitat quality in the Yellow River Basin in Inner Mongolia from 1990 to 2020 [J]. Arid Zone Research, 2024, 41(4): 674-683. |
[8] | LI Jiake, SHAO Zhanlin. Spatiotemporal evolution and prediction of carbon stock in Urumqi City based on PLUS and InVEST models [J]. Arid Zone Research, 2024, 41(3): 499-508. |
[9] | YAN Li, CAO Guangchao, KANG Ligang, LIU Menglin, YE Deli. Analysis of spatial and temporal changes in habitat quality and driving factors in Gonghe County using the InVEST model [J]. Arid Zone Research, 2024, 41(2): 314-325. |
[10] | CHEN Chunbo,LI Junli,ZHAO Yan,XIA Jiang,TIAN Weitao,LI Chaofeng. Spatiotemporal dynamics of grassland vegetation and its responses to climate change in Changji Hui Autonomous Prefecture, Xinjiang [J]. Arid Zone Research, 2023, 40(9): 1484-1497. |
[11] | SHEN Cao,REN Zongping,LI Peng,WANG Kaibo,LU Kexin,REN Zhengyan,WEI Xiaoyan. Identification of priority areas for ecological compensation under soil and water conservation in Ningxia [J]. Arid Zone Research, 2023, 40(9): 1527-1536. |
[12] | ZHOU Xiaodong, CHANG Shunli, WANG Guanzheng, ZHANG Yutao, YU Shulong, ZHANG Tongwen. Radial growth response of Picea schrenkiana to climate change in the middle section of the northern slope of the Tianshan Mountains [J]. Arid Zone Research, 2023, 40(8): 1215-1228. |
[13] | ZHANG Xiaomin, ZHANG Dongmei, ZHANG Wei. Effects of human activities on carbon storage in the Irtysh River Basin [J]. Arid Zone Research, 2023, 40(8): 1333-1345. |
[14] | BAO Yubin,WANG Yaozong,LU Feng,LIU Zizeng,MA Dawei,YANG Yong,WU Juan,ZHANG Yongkang. Construction of an ecological security pattern and zoning optimization for territorial space in the Liupan Mountain Area [J]. Arid Zone Research, 2023, 40(7): 1172-1183. |
[15] | CHEN Shi, HUANG Yinlan, JIN Yunxiang. Spatiotemporal changes of habitat quality before and after the implementation of Grain for Green Project in the middle reaches of the Yellow River [J]. Arid Zone Research, 2023, 40(3): 456-468. |
|