干旱区研究 ›› 2023, Vol. 40 ›› Issue (6): 1014-1026.doi: 10.13866/j.azr.2023.06.16
• 生态与环境 • 上一篇
刘笑1,2(),郭鹏1,2(),祁佳峰1,2,杜文玲1,2,张茹倩1,2,张坤1,2
收稿日期:
2022-09-24
修回日期:
2023-03-31
出版日期:
2023-06-15
发布日期:
2023-06-21
通讯作者:
郭鹏. E-mail: 作者简介:
刘笑(1999-),女,硕士研究生,主要从事遥感图像处理与应用研究. E-mail: 基金资助:
LIU Xiao1,2(),GUO Peng1,2(),QI Jiafeng1,2,DU Wenling1,2,ZHANG Ruqian1,2,ZHANG Kun1,2
Received:
2022-09-24
Revised:
2023-03-31
Online:
2023-06-15
Published:
2023-06-21
摘要:
为及时、客观、定量地评估新疆阿勒泰市生态环境,研究基于多源遥感数据构建改进型遥感生态指数(MRSEI)结合标准差椭圆和重心迁移模型分析其时空变化特征,并使用地理探测器模型对绿度、干度、湿度、温度和空气质量5个指标进行因子探测。结果表明:(1) 2015—2021年,阿勒泰市绿度和湿度指标对于区域内生态环境起显著正相关作用,温度、干度和空气质量这3个指标起显著负相关作用;(2) 2015—2021年阿勒泰市MRSEI均值呈上升趋势,空间上,Ⅰ级和Ⅱ级生态指数区域的空间迁移能力较强,Ⅲ~Ⅴ级,即高生态指数区域在空间结构上相对较为稳定。Ⅰ~Ⅳ级生态指数重心总体向北移动,Ⅴ级生态指数重心整体向南移动,表明阿勒泰市南部高生态指数分布增长明显。(3) 年份不同,造成生态环境质量改变的主导因子不同,阿勒泰市生态环境质量空间的演变是受到多个因素共同作用的结果。(4) MRSEI和RSEI(遥感生态指数)对阿勒泰市生态监测结果大致趋势一致,两者在空间分布和程度的差异与气溶胶光学厚度(AOD)的空间分布有关,表明了即使在空气质量较好的阿勒泰市AOD对其生态质量在空间分布上仍有影响。2015—2021年,阿勒泰市生态环境受多种因素影响有向南变好的趋势。
刘笑, 郭鹏, 祁佳峰, 杜文玲, 张茹倩, 张坤. 基于MRSEI模型的阿勒泰市生态环境时空变化及驱动力分析[J]. 干旱区研究, 2023, 40(6): 1014-1026.
LIU Xiao, GUO Peng, QI Jiafeng, DU Wenling, ZHANG Ruqian, ZHANG Kun. Spatio-temporal changes and driving forces in the ecological environment of Altay City determined using an MRSEI model[J]. Arid Zone Research, 2023, 40(6): 1014-1026.
表1
数据来源"
数据 | 空间分辨率 | 时间/年-月-日 | 数据来源 |
---|---|---|---|
行政区划 | 1:1000000 | 2013 | 国家地球系统科学数据中心 |
Landsat8 OLI L1 | 30 m | 2015-08-18、2017-08-23、2019-08-13、2021-08-02 | 地理空间数据云 |
MCD19 A2 | 1 km | 2015-08-18、2017-08-23、2019-08-13、2021-08-02 | 美国航空航天局 |
DEM | 30 m | - | 地理空间数据云 |
表4
生态质量各级比例"
生态质量 分级 | 2015年 | 2017年 | 2019年 | 2021年 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MRSEI/% | RSEI/% | MRSEI/% | RSEI/% | MRSEI/% | RSEI/% | MRSEI/% | RSEI/% | ||||
差 | 26.88 | 29.81 | 28.97 | 28.45 | 27.65 | 27.65 | 30.50 | 29.64 | |||
较差 | 34.31 | 38.52 | 35.78 | 36.58 | 28.40 | 28.40 | 25.41 | 26.44 | |||
中等 | 21.15 | 17.29 | 19.51 | 19.54 | 23.76 | 23.76 | 20.99 | 19.90 | |||
良好 | 11.01 | 10.27 | 9.46 | 9.76 | 13.53 | 13.53 | 14.53 | 14.09 | |||
优秀 | 6.65 | 4.11 | 6.27 | 5.67 | 6.66 | 6.66 | 8.57 | 9.93 |
表5
重心偏移距离与方位角统计"
MRSEI 等级 | 2015—2017年 | 2017—2019年 | 2019—2021年 | 2015—2021年 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
偏移距离/km | 方位角/(°) | 偏移距离/km | 方位角/(°) | 偏移距离/km | 方位角/(°) | 平均偏移距离/km | ||||
Ⅰ | 9.720 | 348.5° | 0.808 | 232.0° | 5.434 | 24.9° | 2.598 | |||
Ⅱ | 2.429 | 96.0° | 6.887 | 198.0° | 3.127 | 39.0° | 1.759 | |||
Ⅲ | 3.747 | 283.4° | 2.342 | 56.9° | 1.799 | 27.1° | 0.243 | |||
Ⅳ | 3.044 | 218.9° | 2.667 | 7.9° | 3.435 | 203.0° | 0.661 | |||
Ⅴ | 1.393 | 167.5° | 9.892 | 187.4° | 6.048 | 294.6° | 0.874 |
表6
2015—2021年不同等级遥感生态指数标准差椭圆参数"
MRSEI 等级 | 2015年 | 2017年 | 2019年 | 2021年 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
长轴 δx/km | 短轴 δx/km | 扁率 e | 长轴 δx/km | 短轴 δx/km | 扁率 e | 长轴 δx/km | 短轴 δx/km | 扁率 e | 长轴 δx/km | 短轴 δx/km | 扁率 e | ||||
Ⅰ | 47.2 | 42.3 | 0.10 | 57.9 | 33.8 | 0.42 | 58.1 | 32.6 | 0.44 | 57.7 | 33.8 | 0.41 | |||
Ⅱ | 59.2 | 39.2 | 0.34 | 57.6 | 39.4 | 0.32 | 57.9 | 40.3 | 0.30 | 55.3 | 39.9 | 0.28 | |||
Ⅲ | 55.2 | 39.7 | 0.28 | 54.2 | 41.9 | 0.23 | 50.0 | 40.4 | 0.19 | 51.0 | 40.1 | 0.21 | |||
Ⅳ | 55.4 | 38.9 | 0.30 | 53.0 | 39.0 | 0.26 | 53.5 | 39.9 | 0.25 | 55.5 | 39.6 | 0.29 | |||
Ⅴ | 49.3 | 36.7 | 0.26 | 48.0 | 37.9 | 0.21 | 46.0 | 38.4 | 0.17 | 49.4 | 39.5 | 0.20 |
[1] | 生态环境是人类生存和发展的根基[J]. 资源导刊, 2022, 429(8): 4. |
[Ecological environment is the foundation of human survival and development[J]. Resources Guide, 2022, 429(8): 4.] | |
[2] | 耿静, 徐栋, 吴御豪, 等. 海南岛生态环境质量时空变化及其对气候变化与人类活动的响应[J]. 生态学报, 2022, 42(12): 4795-4806. |
[Geng Jing, Xu Dong, Wu Yuhao, et al. Spatio-temporal evolution of eco-environment quality and the response to climate change and human activities in Hainan Island[J]. Acta Ecologica Sinica, 2022, 42(12): 4795-4806.] | |
[3] | 排日海·合力力, 昝梅, 阿里木江·卡斯木, 乌鲁木齐市生态环境遥感评价及驱动因子分析[J]. 干旱区研究, 2021, 38(5): 1484-1496. |
[Pariha Helili, Zan Mei, Alimjan Kasim. Remote sensing evaluation of ecological environment in Urumqi City and analysis of driving factors[J]. Arid Zone Research, 2021, 38(5): 1484-1496.] | |
[4] |
王静, 周伟奇, 许开鹏, 等. 京津冀地区的生态质量定量评价[J]. 应用生态学报, 2017, 28(8): 2667-2676.
doi: 10.13287/j.1001-9332.201708.008 |
[Wang Jing, Zhou Weiqi, Xu Kaipeng, et al. Quantitative assessment of ecological quality in Beijing-Tianjin-Hebei urban megaregion, China[J]. Chinese Journal of Applied Ecology, 2017, 28(8): 2667-2676.]
doi: 10.13287/j.1001-9332.201708.008 |
|
[5] | 张学玲, 余文波, 蔡海生, 等. 区域生态环境脆弱性评价方法研究综述[J]. 生态学报, 2018, 38(16): 5970-5981. |
[Zhang Xueling, Yu Wenbo, Cai Haisheng, et al. Review of the evaluation methods of regional eco-environmental vulnerability[J]. Acta Ecologica Sinica, 2018, 38(16): 5970-5981.] | |
[6] |
宋慧敏, 薛亮. 基于遥感生态指数模型的渭南市生态环境质量动态监测与分析[J]. 应用生态学报, 2016, 27(12): 3913-3919.
doi: 10.13287/j.1001-9332.201612.024 |
[Song Huimin, Xue Liang. Dynamic monitoring and analysis of ecological environment in Weinan City, Northwest China based on RSEI model[J]. Chinese Journal of Applied Ecology, 2016, 27(12): 3913-3919.]
doi: 10.13287/j.1001-9332.201612.024 |
|
[7] |
方创琳, 周成虎, 顾朝林, 等. 特大城市群地区城镇化与生态环境交互耦合效应解析的理论框架及技术路径[J]. 地理学报, 2016, 71(4): 531-550.
doi: 10.11821/dlxb201604001 |
[Fang Chuanglin, Zhou Chenghu, Gu Chaolin, et al. Theoretical analysis of interactive coupled effects between urbanization and eco-environment in mega-urban agglomerations[J]. Acta Geographica Sinica, 2016, 71(4): 531-550.]
doi: 10.11821/dlxb201604001 |
|
[8] | 张保卫. 基于RSEI模型的生态环境质量评价及系统设计——以郑州市为例[D]. 郑州: 郑州大学, 2018. |
[Zhang Baowei. Eco-environmental Quality Assessment and System Design Based on RSEI Model-A Case Study of Zhenzhou[D]. Zhengzhou: Zhengzhou University, 2018.] | |
[9] | 王志杰, 代磊. 黔中喀斯特山地城市土地利用/覆被变化及其生态效应评价——以贵阳市花溪区为例[J]. 生态学报, 2021, 41(9): 3429-3440. |
[Wang Zhijie, Dai Lei. Assessment of land use/cover changes and its ecological effect in karst mountainous cities in central Guizhou Province: Taking Huaxi District of Guiyang City as a case[J]. Acta Ecologica Sinica, 2021, 41(9): 3429-3440.] | |
[10] |
Yan Y, Zhuang Q, Zan C, et al. Using the Google Earth Engine to rapidly monitor impacts of geohazards on ecological ouality in highly susceptible areas[J]. Ecological Indicators, 2021, 132: 108258, 10.1016/j.ecolind.2021.108258.
doi: 10.1016/j.ecolind.2021.108258 |
[11] |
Tang P, Huang J, Zhou H, et al. Local and telecoupling coordination degree model of urbanization and the eco-environment based on RS and GIS: A case study in the Wuhan Urban agglomeration[J]. Sustainable Cities and Society, 2021, 75: 103405, 10.1016/j.scs.2021.103405
doi: 10.1016/j.scs.2021.103405 |
[12] |
Xiong Y, Xu W, Lu N, et al. Assessment of spatial-temporal changes of ecological environment quality based on Rsei and Gee: A case study in Erhai Lake Basin, Yunnan Province, China[J]. Ecological Indicators, 2021, 125: 107518, 10.1016/j.ecolind.2021.107518
doi: 10.1016/j.ecolind.2021.107518 |
[13] | 徐伟恒, 熊源, 黄邵东, 等. 遥感在生态环境质量监测与评价中的应用现状研究[J]. 西南林业大学学报(自然科学): 2023, 43(2): 195-204. |
[Xu Weiheng, Xiong Yuan, Huang Shaodong, et al. Review and research progress of the application of remote sensing in ecological environment quality monitoring and evaluation[J]. Journal of Southwest Forestry University(Natural Sciences), 2023, 43(2): 195-204.] | |
[14] |
张灿, 徐涵秋, 张好, 等. 南方红壤典型水土流失区植被覆盖度变化及其生态效应评估——以福建省长汀县为例[J]. 自然资源学报, 2015, 30(6): 917-928.
doi: 10.11849/zrzyxb.2015.06.003 |
[Zhang Can, Xu Hanqiu, Zhang Hao, et al. Fractional vegetation cover change and its ecological effect assessment in a typical reddish soil region of Southeastern China: Changting County, Fujian Province[J]. Journal of Natural Resources, 2015, 30(6): 917-928.]
doi: 10.11849/zrzyxb.2015.06.003 |
|
[15] | 孙从建, 李晓明, 张文强, 等. 基于遥感信息的吕梁山贫困区生态安全评价[J]. 中国环境科学, 2019, 39(12): 5352-5360. |
[Sun Congjian, Li Xiaoming, Zhang Wenqiang, et al. Evaluation of ecological security in poverty-stricken region of Lüliang Mountain based on the remote sensing image[J]. China Environmental Science, 2019, 39 (12) : 5352-5360.] | |
[16] | 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013, 33(24): 7853-7862. |
[Xu Hanqiu. A remote sensing urban ecological index and its application[J]. Acta Ecologica Sinica, 2013, 33(24): 7853-7862.] | |
[17] | 张雨斯, 包玉海, 贺忠华. 1990—2021年内蒙古遥感生态环境质量变化及趋势分析——以呼伦贝尔市陈巴尔虎旗为例[J]. 干旱区研究, 2023, 40(2): 326-336. |
[Zhang Yusi, Bao Yuhai, He Zhonghua. Detecting the change and trend of remote sensing ecological quality in Inner Mongolia from 1990-2021: A case study of Chenbarhu Banner of Hulunbuir City[J]. Arid Zone Research, 2023, 40(2): 326-336.] | |
[18] | 乔雪梅, 刘普幸, 任媛, 等. 基于遥感的黑河流域生态环境变化特征及成因分析[J]. 中国环境科学, 2020, 40(9): 3962-3971. |
[Qiao Xuemei, Liu Puxing, Ren Yuan, et al. Analysis of the characteristics and driving factors of ecological environment changes in Heihe river basin based on remote sensing data[J]. China Environmental Science, 2020, 40(9): 3962-3971.] | |
[19] | 杨羽佳, 张怡, 匡天琪, 等. 利用改进城市遥感生态指数的苏州市生态分析[J]. 测绘科学技术学报, 2021, 38(3): 323-330. |
[Yang Yujia, Zhang Yi, Kuang Tianqi, et al. Ecological analysis of Suzhou City using improved urban remote sensing ecological index[J]. Journal of Geomatics Science and Technology, 2021, 38(3): 323-330.] | |
[20] | 黄锦, 陈勇, 周皓, 等. 基于改进RSEI模型的矿业城市生态环境质量变化研究[J]. 矿业研究与开发, 2022, 42(1): 187-192. |
[Huang Jin, Chen Yong, Zhou Hao, et al. Study on the changes of ecological environment quality of Mining City based on Improved RSEI model[J]. Mining Research and Development, 2022, 42(1): 187-192.] | |
[21] | 徐涵秋, 邓文慧. MRSEI指数的合理性分析及其与RSEI指数的区别[J]. 遥感技术与应用, 2022, 37(1): 1-7. |
[Xu Hanqiu, Deng Wenhui. Rationality analysis of MRSEI and its difference with RSEI[J]. Remote Sensing Technology and Application, 2022, 37(1): 1-7.] | |
[22] |
Liao Weihua, Jiang Weiguo, Huang Ziqian. Spatiotemporal variations of eco-environment in the Guangxi Beibu Gulf Economic Zone based on remote sensing ecological index and granular computing[J]. Journal of Geographical Sciences, 2022, 32(9): 1813-1830.
doi: 10.1007/s11442-022-2024-3 |
[23] | 第五泾渭, 梅家龙, 余翰名, 等. 半干旱地区遥感生态指数的构建及应用[J]. 环境监测管理与技术, 2022, 34(4): 21-26. |
[Di Wujingwei, Mei Jialong, Yu Hanming, et al. Construction and application of remote sensing ecological index in semi-arid region[J]. The Administration and Technique of Environmental Monitoring, 2022, 34(4): 21-26.] | |
[24] | 徐涵秋. 水土流失区生态变化的遥感评估[J]. 农业工程学报, 2013, 29(7): 91-97, 294. |
[Xu Hanqiu. Assessment of ecological change in soil loss area using remote sensing technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(7): 91-97, 294.] | |
[25] |
王杰, 马佳丽, 解斐斐, 等. 干旱地区遥感生态指数的改进——以乌兰布和沙漠为例[J]. 应用生态学报, 2020, 31(11): 3795-3804.
doi: 10.13287/j.1001-9332.202011.011 |
[Wang Jie, Ma Jiali, Xie Feifei. et al. Improvement of remote sensing ecological index in arid regions: Taking Ulan Buh Desert as an example[J]. Chinese Journal of Applied Ecology, 2020, 31(11): 3795-3804.]
doi: 10.13287/j.1001-9332.202011.011 |
|
[26] |
范德芹, 邱玥, 孙文彬, 等. 基于遥感生态指数的神府矿区生态环境评价[J]. 测绘通报, 2021(7): 23-28.
doi: 10.13474/j.cnki.11-2246.2021.0203 |
[Fan Deqin, Qiu Yue, Sun Wenbin, et al. Evaluating ecological environment based on remote sensing ecological index in Shenfu mining area[J]. Bulletin of Surveying and Mapping, 2021(7): 23-28.]
doi: 10.13474/j.cnki.11-2246.2021.0203 |
|
[27] | 刘英, 党超亚, 岳辉, 等. 改进型遥感生态指数与RSEI的对比分析[J]. 遥感学报, 2022, 26(4): 683-697. |
[Liu Ying, Dang Chaoya, Yue Hui, et al. Comparison between modified remote sensing ecological index and RSEI[J] National Remote Sensing Bulletin, 2022, 26(4): 683-697.] | |
[28] | 孟琪, 武志涛, 杜自强, 等. 基于地理探测器的区域植被覆盖度的定量影响——以京津风沙源区为例[J]. 中国环境科学, 2021, 41(2): 826-836. |
[Meng Qi, Wu Zhitao, Du Ziqiang, et al. Quantitative influence of regional fractional vegetation cover based on geodetector model:Take the Beijing-Tianjin sand source region as an example[J]. China Environmental Science, 2021, 41(2): 826-836.] | |
[29] |
朱增云, 阿里木江·卡斯木. 基于地理探测器的伊犁谷地生境质量时空演变及其影响因素[J]. 生态学杂志, 2020, 39(10): 3408-3420.
doi: 10.13292/j.1000-4890.202010.009 |
[Zhu Zengyun, Alimujiang Kasimu. Spatial-temporal evolution of habitat quality in Yili Valley based on geographical detector and its influencing factors[J]. Chinese Journal of Ecology, 2020, 39(10): 3408-3420.]
doi: 10.13292/j.1000-4890.202010.009 |
|
[30] | 新疆维吾尔自治区生态环境厅. 新疆维吾尔自治区2020年生态环境状况公报[DB/OL]. https://sthjt.Xinjiang.gov.cn. |
[Geography of Ecological Environment Department of Xinjiang Uygur Autonomous Region. Xinjiang Uygur Autonomous Region 2020 ecological environment status bulletin[DB/OL]. https://sthjt.Xinjiang.gov.cn. | |
[31] | 王飞, 李海花, 刘红霞. 阿勒泰市大气污染物的统计特征分析[J]. 新疆农垦科技, 2018, 41(3): 44-46. |
[Wang Fei, Li Haihua, Liu Hongxia. Statistical analysis of air pollutants in Altay City[J]. Xinjiang Farm Research of Science and Technology, 2018, 41(3): 44-46.] | |
[32] |
Goward Samuel-N, Xue Yongkang, Czajkowski Kevin-P. Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: An exploration with the simplified simple biosphere model[J]. Remote Sensing of Environment, 2002, 79(2-3): 225-242.
doi: 10.1016/S0034-4257(01)00275-9 |
[33] |
Artis D A, Carnahan W H. Survey of emissivity variability in thermography of urban areas[J]. Remote Sensing of Environment, 1982, 12(4): 313-329.
doi: 10.1016/0034-4257(82)90043-8 |
[34] |
Weng Q, Lu D, Schubring J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies[J]. Remote Sensing of Environment, 2004, 89(4): 467-483.
doi: 10.1016/j.rse.2003.11.005 |
[35] |
Nichol J. Remote sensing of urban heat islands by day and night[J]. Photogrammetric Engineering and Remote Sensing, 2005, 71(5): 613-621.
doi: 10.14358/PERS.71.5.613 |
[36] |
Xu H. A new index for delineating built-up land features in satellite imagery[J]. International Journal of Remote Sensing, 2008, 29(14): 4269-4276.
doi: 10.1080/01431160802039957 |
[37] | Rikimaru A, Roy P, Miyatake S. Tropical forest cover density mapping[J]. Tropical Ecology, 2002, 43(1): 39-47. |
[38] |
Lyapustin A, Martonchik J, Wang Y, et al. Multiangle implementation of atmospheric correction(maiac): 1. Radiative transfer basis and look-up tables[J]. Journal of Geophysical Research: Atmospheres, 2011, 116: D03210, 10.1029/2010JD014985.
doi: 10.1029/2010JD014985 |
[39] |
Paciorek C J, Liu Y, Moreno-macias H, et al. Spatiotemporal associations between goes aerosol optical depth retrievals and ground-level PM2.5[J]. Environmental Science & Technology, 2008, 42(15): 5800-5806.
doi: 10.1021/es703181j |
[40] | 施益强, 陈坰烽, 王坚, 等. 厦门市MODIS气溶胶光学厚度与PM2.5的时空特征及其相关性[J]. 大气与环境光学学报, 2020, 15(5): 334-346. |
[Shi Yiqiang, Chen Jiongfeng, Wang Jian, et al. Spatial and temporal characteristics and correlation of MODIS aerosol optical depth and PM2.5 concentration over Xiamen City[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(5): 334-346.] | |
[41] | 张超, 叶松, 汪杰君, 等. 桂林气溶胶光学厚度与PM2.5关系特性[C]// 《环境工程》2019年全国学术年会论文集(中册). 北京: 《工业建筑》杂志社有限公司, 2019: 235-238. |
Zhang Chao, Ye Song, Wang Jiejun, et al. Relationship between aerosol optical depthh and PM2.5 in Guilin[C]// Proceedings of the 2019 National Academic Annual Conference of ‘Environmental Engineering’(Volume 2). Beijing: Industrial Building Magazine Co., Ltd., 2019: 235-238.] | |
[42] | 高宇潇, 刘志辉, 王敬哲. 乌鲁木市PM2.5浓度与MODIS气溶胶光学厚度相关性分析[J]. 干旱区地理, 2018, 41(2): 298-305. |
[Gao Yuxiao, Liu Zhihui, Wang Jingzhe. Correlation analysis of PM2.5 concentration and MODIS aerosol optical depth in Urumqi City[J]. Arid Land Geography, 2018, 41(2): 298-305.] | |
[43] | 张新蕾, 黄凤荣. 基于大连市MODIS数据的气溶胶光学厚度与PM2.5和PM10的相关性分析[J]. 国土与自然资源研究, 2017(6): 59-61. |
[Zhang Xinlei, Huang Fengrong. Correlative analysis of aerosol optical thickness and PM2.5 and PM10 based on MODIS data of Dalian[J]. Territory & Natural Resources Study, 2017(6): 59-61.] | |
[44] | 李昕. 基于MODIS的AOD反演与PM2.5时空变化分析与监测——以香港地区为例[D]. 泰安: 山东农业大学, 2017. |
[Li Xin. MODIS AOD Retrieval and Analysis and Monitoring for Spatio-temporal Variation of PM2.5: A Case Study in Hong Kong[D]. Tai’an: Shandong Agricultural University, 2017.] | |
[45] | 秦文, 武云霞, 盛寁, 等. 基于MODIS-AOD产品的南昌市近地面颗粒物定量反演[J]. 广州化工, 2016, 44(23): 125-128. |
[Qin Wen, Wu Yunxia, Sheng Zan, et al. Study on quantitative inversion MODIS-AOD products and surface atmospheric particulate matter concentration in Nanchang City[J]. Guangzhou Chemical Industry, 2016, 44(23): 125-128.] | |
[46] | 王伟齐, 臧增亮, 张梅. 北京地区PM2.5、PM10与卫星AOD的相关性分析(S9)[C]// 第32届中国气象学会年会S9大气成分与天气、气候变化. 北京: 中国气象学会, 2015: 304-306. |
[Wang Weiqi, Zang Zengliang, Zhang Mei. Correlation analysis of PM2.5, PM10 and satellite AOD in Beijing(S9)[C]// S9 Atmospheric Composition and Weather, Climate Change. Beijing: China Meteorological Society, 2015: 304-306.] | |
[47] | 刘皓宇. 赣南地区土地利用与经济重心迁移特征及影响因素分析[D]. 南昌: 南昌大学, 2018. |
[Liu Haoyu. The Analysis of the Characteristics and Influencing Factors of Land Use and in Gannan and Economic Center of Gravity’s Migration[D]. Nanchang: Nanchang University, 2018.] | |
[48] |
王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010 |
[Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.]
doi: 10.11821/dlxb201701010 |
[1] | 齐润泽, 潘竟虎. 河湟地区生态脆弱性时空演变及影响因素研究[J]. 干旱区研究, 2023, 40(6): 1002-1013. |
[2] | 李鑫磊, 李瑞平, 王秀青, 王思楠, 王成坤. 基于地理探测器的河套灌区林草植被覆盖度时空变化与驱动力分析[J]. 干旱区研究, 2023, 40(4): 623-635. |
[3] | 吕锦心, 梁康, 刘昌明, 张仪辉, 刘璐. 无定河流域土地覆被空间分异机制及相关水碳变量变化[J]. 干旱区研究, 2023, 40(4): 563-572. |
[4] | 马浩文, 王永芳, 郭恩亮. 基于GEE的翁牛特旗土地沙漠化遥感监测[J]. 干旱区研究, 2023, 40(3): 504-516. |
[5] | 徐涛,于欢,孔博,邱霞,胡孟珂,凌鹏飞. 藏北高原砾石粒径空间异质性研究[J]. 干旱区研究, 2023, 40(2): 292-302. |
[6] | 贺军奇,拜寒伟,徐轶玮,倪莉莉. 陕西黄土区农田土壤主要养分特征及影响因素[J]. 干旱区研究, 2023, 40(12): 1907-1917. |
[7] | 侯文兵, 李开明, 黄卓. 近20 a河西地区绿洲效应时空变化特征及归因分析[J]. 干旱区研究, 2023, 40(12): 2031-2042. |
[8] | 裴宏泽, 赵亚超, 张廷龙. 2000—2020年黄土高原NEP时空格局与驱动力[J]. 干旱区研究, 2023, 40(11): 1833-1844. |
[9] | 吴雪晴, 张乐乐, 高黎明, 李炎坤, 刘轩辰. 青海湖流域NPP动态变化及驱动力[J]. 干旱区研究, 2023, 40(11): 1824-1832. |
[10] | 赵蒙恩,闫庆武,刘政婷,王文铭,李桂娥,吴振华. 鄂尔多斯市土壤侵蚀时空演变及影响因子分析[J]. 干旱区研究, 2022, 39(6): 1819-1831. |
[11] | 王琦琨,武玮,杨雪琪,桑国庆. 陕西省生境质量时空演变及驱动机制分析[J]. 干旱区研究, 2022, 39(5): 1684-1694. |
[12] | 王丽霞,赵蕊,刘招,张双成,孔金玲,杨耘. 基于RSEI的延河流域生态环境质量监测与预估[J]. 干旱区研究, 2022, 39(3): 943-954. |
[13] | 排日海·合力力,昝梅,阿里木江·卡斯木. 乌鲁木齐市生态环境遥感评价及驱动因子分析[J]. 干旱区研究, 2021, 38(5): 1484-1496. |
[14] | 席文涛,高晶. 基于地理探测器分析青藏高原降水δ18O空间分异特征[J]. 干旱区研究, 2021, 38(5): 1199-1206. |
[15] | 常梦迪,王新军,李娜,闫立男,马克,李菊艳. 基于CSLE模型的天山北坡中段山区水力侵蚀时空变化特征及影响因素研究[J]. 干旱区研究, 2021, 38(4): 939-949. |
|