Arid Zone Research ›› 2021, Vol. 38 ›› Issue (2): 429-437.doi: 10.13866/j.azr.2021.02.14
• Plant and Plant Physiology • Previous Articles Next Articles
WEN Jun(),ZHAO Chengzhang(),LI Qun,ZHAO Lianchun
Received:
2020-06-29
Revised:
2020-10-17
Online:
2021-03-15
Published:
2021-04-25
Contact:
Chengzhang ZHAO
E-mail:wenjun198211@163.com;zhaocz601@163.com
WEN Jun,ZHAO Chengzhang,LI Qun,ZHAO Lianchun. Studies of correlation between the transpiration rate and leaf traits of Populus euphratica in the middle reaches of the Heihe River wetland[J].Arid Zone Research, 2021, 38(2): 429-437.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Soil moisture content and characteristics of Populus euphratica communities in each plots (mean±SE)"
样地 | SMC/% | PAR/(μmol·m-2 ·s-1) | 高度/cm | DBH/cm | 郁闭度/% |
---|---|---|---|---|---|
Ⅰ | 58.23 ± 1.75a | 759.43 ± 17.36a | 691.67 ± 19.90a | 14.68 ± 0.68a | 85.20 ± 0.89a |
Ⅱ | 40.53 ± 1.56b | 963.63 ± 19.24b | 557.33 ± 18.56b | 10.24 ± 0.57b | 74.40 ± 0.75b |
Ⅲ | 28.36 ± 0.85c | 1329.33 ± 27.82c | 294.03 ± 14.20c | 5.21 ± 0.37c | 57.39 ± 0.86c |
Tab. 2
Leaf traits and photosynthetic characteristics of Populus euphratica in each plots (mean ± SE)"
样地Ⅰ | 样地Ⅱ | 样地Ⅲ | |
---|---|---|---|
叶脉密度/(mm·mm-2) | 2.26±0.11c | 2.51±0.13b | 2.91±0.17a |
叶脉直径/mm | 0.37±0.01a | 0.33±0.01b | 0.29±0.01c |
叶面积/cm2 | 13.13±0.56a | 9.46±0.39b | 4.07±0.31c |
叶厚度/mm | 0.44±0.01c | 0.47±0.01b | 0.51±0.02a |
比叶面积/(cm2·g-1) | 44.83±0.61a | 39.50±0.35b | 30.57±0.24c |
Pn/(μmol CO2·m-2 ·s-1) | 5.65±0.18c | 9.83± 0.21b | 12.99±0.27a |
Tr/(mmol H2O·m-2 ·s-1) | 3.65±0.24c | 5.35±0.43b | 6.63±0.55a |
Gs/(mmol·m-2 ·s-1) | 165.04±11.62c | 264.13±16.52b | 335.67±19.86a |
Ci/(μmol·mol-1) | 302.71±11.71b | 337.31±16.25a | 340.14±16.83a |
VPD/(Pa·kPa-1) | 12.26±1.18c | 20.12±1.26a | 20.85±1.33a |
相对湿度/% | 69.48±0.75a | 56.40±0.70b | 43.84±0.93c |
Tab. 3
The correlation analysis between photosynthetic parameters and leaf traits characteristics of Populus euphratica in each plots"
叶脉密度 | 叶脉直径 | 叶面积 | 叶厚度 | 比叶面积 | Pn | Tr | Gs | Ci | |
---|---|---|---|---|---|---|---|---|---|
叶脉密度 | 1 | ||||||||
叶脉直径 | -0.92** | 1 | |||||||
叶面积 | -0.95** | 0.93** | 1 | ||||||
叶厚度 | 0.89* | -0.87* | -0.90** | 1 | |||||
比叶面积 | -0.95** | 0.93** | 0.99** | -0.91** | 1 | ||||
Pn | 0.93** | -0.97** | -0.97** | 0.88* | -0.97** | 1 | |||
Tr | 0.95** | -0.98** | -0.95** | 0.88* | -0.94** | 0.97** | 1 | ||
Gs | 0.91** | -0.93** | -0.93** | 0.86* | -0.93** | 0.96** | 0.94** | 1 | |
Ci | 0.66 | -0.76 | -0.62 | 0.59 | -0.62 | 0.74 | 0.74 | 0.74 | 1 |
[1] | Wright I J, Westoby M. Leaves at low versus high rainfall: Coordination of structure, lifespan and physiology[J]. New Phytologist, 2002,155(3):403-416. |
[2] |
Scoffoni C, Rawls M, McKown A, et al. Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture[J]. Plant Physiology, 2011,156(2):832-843.
pmid: 21511989 |
[3] | Sack L, Scoffoni C. Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future[J]. New Phytologist, 2013,198(4):983-1000. |
[4] | 于贵瑞, 王秋凤. 植物光合、蒸腾与水分利用的生理生态学[M]. 北京: 科学出版社, 2010. |
[ Yu Guirui, Wang Qiufeng. Ecophysiology of Plant Photosynthesis, Transpiration, and Water Use[M]. Beijing: Science Press, 2010. ] | |
[5] | Nardini A, Raimondo F, LoGullo M A. Leaf miners help us understand leaf hydraulic design[J]. Plant, Cell and Environment, 2010,33(7):1091-1100. |
[6] |
Matthew-Ogburn R, Edwards E J. Repeated origin of three-dimensional leaf venation releases constraints on the evolution of succulence in plants[J]. Current Biology, 2013,23(8):722-726.
pmid: 23583553 |
[7] | Pagano M, Storchi P. Leaf vein density: A possible role as cooling system[J]. Journal of Life Sciences, 2015,7:299-303. |
[8] | 宋丽清, 胡春梅, 侯喜林, 等. 高粱、紫苏叶脉密度与光合特性的关系[J]. 植物学报, 2015,50(1):100-106. |
[ Song Liqing, Hu Chunmei, Hou Xilin, et al. Relationship between photosynthetic characteristics and leaf vein density in Sorghum bicolor and Perilla frutescens[J]. Chinese Bulletin of Botany, 2015,50(1):100-106. ] | |
[9] | Sheffield J, Wood E F, Roderick M L. Little change in global drought over the past 60 years[J]. Nature, 2012,491(7424):435-440. |
[10] | 李永华, 李臻, 辛智鸣, 等. 形态变化对叶片表面温度的影响[J]. 植物生态学报, 2018,42(2):202-208. |
[ Li Yonghua, Li Zhen, Xin Zhiming, et al. Effects of leaf shape plasticity on leaf surface temperature[J]. Chinese Journal of Plant Ecology, 2018,42(2):202-208. ] | |
[11] | 韩玲, 赵成章, 冯威, 等. 张掖湿地芨芨草叶脉密度和叶脉直径的权衡关系对3种生境的响应[J]. 植物生态学报, 2017,41(8):872-881. |
[ Han Ling, Zhao Chengzhang, Feng Wei, et al. Trade-off relationship between vein density and vein diameter of Achnatherum splendensin response to habitat changes in Zhangye wetland[J]. Chinese Journal of Plant Ecology, 2017,41(8):872-881. ] | |
[12] | 任悦, 赵成章, 李雪萍, 等. 秦王川湿地滨藜叶脉性状与蒸腾速率关系对种群密度的响应[J]. 生态学报, 2018,38(16):5819-5827. |
[ Ren Yue, Zhao Chengzhang, Li Xueping, et al. The response of the relationship between transpiration rate and leaf traits of Atriplex patens to population density in the national wetland park conservation areas in Qinwangchuan[J]. Acta Ecologica Sinica, 2018,38(16):5819-5827. ] | |
[13] |
Chen S L, Polle A. Salinity tolerance of Populus[J]. Plant Biology, 2010,12(2):317-333.
doi: 10.1111/j.1438-8677.2009.00301.x pmid: 20398238 |
[14] | 杨丽雯, 何秉宇, 黄培祐, 等. 和田河流域天然胡杨林的生态服务价值评估[J]. 生态学报, 2006,26(3):681-689. |
[ Yang Liwen, He Bingyu, Huang Peiyou, et al. Assessment of ecological service values for native Populus euphratica forest in Khotan watershed[J]. Acta Ecologica Sinica, 2006,26(3):681-689. ] | |
[15] | Niinemets Ü, Portsmuth A, Tobias M. Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: A neglected source of leaf physiological differentiation?[J]. Functional Ecology, 2007,21(1) 28-40. |
[16] | Blonder B, Violle C, Bentley L P, et al. Venation networks and the origin of the leaf economics spectrum[J]. Ecology Letters, 2010,14(2):91-100. |
[17] | Reich P B. The world-wide “fast-slow” plant economics spectrum: a traits manifesto[J]. Journal of Ecology, 2014,102(2):275-301. |
[18] | 段贝贝, 赵成章, 徐婷, 等. 兰州北山不同坡向刺槐叶脉密度与气孔性状的关联性分析[J]. 植物生态学报, 2016,40(12):1289-1297. |
[ Duan Beibei, Zhao Chengzhang, Xu Ting, et al. Correlation analysis between vein density and stomatal traits of Robinia pseudoacacia in different aspects of Beishan Mountain in Lanzhou[J]. Chinese Journal of Plant Ecology, 2016,40(12):1289-1297. ] | |
[19] | 徐婷, 赵成章, 韩玲, 等. 张掖湿地旱柳叶脉密度与水分利用效率的关系[J]. 植物生态学报, 2017,41(7):761-769. |
[ Xu Ting, Zhao Chengzhang, Han Ling, et al. Correlation between vein density and water use efficiency of Salix matsudana in Zhangye Wetland[J]. Chinese Journal of Plant Ecology, 2017,41(7):761-769. ] | |
[20] | 陈静, 庄立会, 沐建华, 等. 云南文山石漠化区车桑子叶脉密度与叶氮含量关系对生境的响应[J]. 生态学报, 2020,40(11):1-9. |
[ Chen Jing, Zhuang Lihui, Mu Jianhua, et al. Relationship between vein density and leaf nitrogen concentration of Dodonaea viscosa in response to habitat changes in rocky desertification area, Wenshan Yun nan[J]. Acta Ecologica Sinica, 2020,40(11):1-9. ] | |
[21] | 黄文娟, 李志军, 杨赵平, 等. 胡杨异形叶结构型性状及其与胸径关系[J]. 生态学杂志, 2010,29(12):2347-2352. |
[ Huang Wenjuan, Li Zhijun, Yang Zhaoping, et al. Heteromorphic leaf structural characteristics and their correlations with diameter at breast height of Populus euphratica[J]. Chinese Journal of Ecology, 2010,29(12):2347-2352. ] | |
[22] | 刘帅飞, 焦培培, 李志军. 灰叶胡杨异形叶的类型及其时空特征[J]. 干旱区研究, 2016,33(5):1098-1103. |
[ Liu Shuaifei, Jiao Peipei, Li Zhijun. Diversifolious types and spatiotemporal characteristics of Populus euphratica Schrenk[J]. Arid Zone Research, 2016,33(5):1098-1103. ] | |
[23] | 王海珍, 韩路, 徐雅丽, 等. 胡杨异形叶光合作用对光强与CO2浓度的响应[J]. 植物生态学报, 2014,38(10):1099-1109. |
[ Wang Haizhen, Han Lu, Xu Yali, et al. Photosynthetic responses of the heteromorphic leaves in Populus euphratica to light intensity and CO2 concentration[J]. Chinese Journal of Plant Ecology, 2014,38(10):1099-1109. ] | |
[24] | 李菊艳, 赵成义, 闫映宇, 等. 不同盐分梯度下胡杨幼苗的光合—光响应特征[J]. 干旱区研究, 2014,31(4):728-733. |
[ Li Juyan, Zhao Chengyi, Yan Yingyu, et al. Response of Populus euphratica seedlings to photosynjournal light under salt stress[J]. Arid Zone Research, 2014,31(4):728-733. ] | |
[25] | 马玉祥, 张永利, 李玉灵, 等. 不同时间尺度环境因子对黑河下游胡杨(Populus euphratica)径向生长的影响[J]. 干旱区研究, 2019,36(6):1502-1511. |
[ Ma Yuxiang, Zhang Yongli, Li Yuling, et al. Effects of environmental factors on radial growth of Populus euphratica at different time scales in the lower reaches of the Heihe River[J]. Arid Zone Research, 2019,36(6):1502-1511. ] | |
[26] | 夏振华, 陈亚宁, 朱成刚, 等. 干旱胁迫环境下的胡杨叶片气孔变化[J]. 干旱区研究, 2018,35(5):1111-1117. |
[ Xia Zhenhua, Chen Yaning, Zhu Chenggang, et al. Stomatal change in leaves of Population euphratica under drought stress[J]. Arid Zone Research, 2018,35(5):1111-1117. ] | |
[27] |
Sack L, Scoffoni C, John G P, et al. How do leaf veins influence the worldwide leaf economic spectrum? Review and synjournal[J]. Journal of Experimental Botany, 2013,64(13):4053-4080.
doi: 10.1093/jxb/ert316 pmid: 24123455 |
[28] | 李群, 赵成章, 王继伟, 等. 甘肃小苏干湖盐沼湿地盐地风毛菊叶形态-光合生理特征对淹水的响应[J]. 植物生态学报, 2019,43(8):685-696. |
[ Li Qun, Zhao Chengzhang, Wang Jiwei, et al. Morphological and photosynthetic physiological characteristics of Saussurea salsa in response to flooding in salt marshes of Xiao Sugan Lake, Gansu, China[J]. Chinese Journal of Plant Ecology, 2019,43(8):685-696. ] | |
[29] | Falster D S, Warton D I, Wright I J. User’s Guide to SMATR: Standardised Major Axis Tests & Routines Version 2. 0. http://www.bio.mq.edu.au/ecology/SMATR/.2012. |
[30] |
Warton D I, Wright I J, Falster D S, et al. Bivariate line-fitting methods for allometry[J]. Biological Reviews, 2006,81(2):259-291.
doi: 10.1017/S1464793106007007 pmid: 16573844 |
[31] | Pitman E J G. A note on normal correlation[J]. Biometrika, 1939,31(1-2):9-12. |
[32] | Warton D I, Weber N C. Common slope tests for bivariate errors-in-variables models[J]. Biometrical Journal, 2002,44(2):161-174. |
[33] | 张泉, 刘咏梅, 杨勤科, 等. 祁连山退化高寒草甸土壤水分空间变异特征分析[J]. 冰川冻土, 2014,36(1):88-94. |
[ Zhang Quan, Liu Yongmei, Yang Qinke, et al. Analysis of spatial variability of soil moisture in degrading alpine meadow in the Qilian Mountain[J]. Journal of Glaciology and Geocryology, 2014,36(1):88-94. ] | |
[34] | Chapin F S, Matson P A, Mooney H A. Principles of Terrestrial Ecosystem Ecology[M]. Li B, Zhao B, Peng R H. Translate. Beijing: Higher Education Press, 2005: 83-127. |
[35] | 龚容, 徐霞, 江红蕾, 等. 干旱半干旱区几种典型灌木半灌木茎叶水分传导系统的结构特征[J]. 北京师范大学学报(自然科学版), 2018,54(4):534-542. |
[ Gong Rong, Xu Xia, Jiang Honglei, et al. Architectural traits of stem-leaf hydraulic system in typical shrubs in arid and semi-arid regions[J]. Journal of Beijing Normal University (Natural Science Edition), 2018,54(4):534-542. ] | |
[36] | 金鹰, 王传宽. 植物叶片水力与经济性状权衡关系的研究进展[J]. 植物生态学报, 2015,39(10):1021-1032. |
[ Jin Yin, Wang Chuankuan. Trade-offs between plant leaf hydraulic and economic traits[J]. Chinese Journal of Plant Ecology, 2015,39(10):1021-1032. ] | |
[37] |
Ellsworth D S, Reich P B. Canopy structure and vertical patterns of photosynjournal and related leaf traits in a deciduous forest[J]. Oecologia, 1993,96(2):169-178.
pmid: 28313412 |
[38] | 张海昕, 李珊, 张硕新, 等. 4个杨树无性系木质部导管结构与栓塞脆弱性的关系[J]. 林业科学, 2013,49(5):54-61. |
[ Zhang Haixin, Li Shan, Zhang Shuoxin, et al. Relationships between xylem vessel structure and embolism vulnerability in four Populus clones[J]. Scientia Silvae Sinicae, 2013,49(5):54-61. ] | |
[39] | Johnson D M, Meinzer F C, Woodruff D R, et al. Leaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species[J]. Plant, Cell& Environment, 2009,32(2):828-836. |
[40] | Nobel P S. Physicochemical and Environmental Plant Physiology[M]. San Diego, USA: Academic Press: 2005. |
[41] |
Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004,428(6985):821-827.
pmid: 15103368 |
[42] |
Poorter L, Bongers L, Bongers F. Architecture of 54 moist-forest tree species: Traits, trade-offs, and functional groups[J]. Ecology, 2006,87(5):1289-1301.
pmid: 16761607 |
[43] |
Funk J L, Vitousek P M. Resource-use efficiency and plant invasion in low-resource systems[J]. Nature, 2007,446(7139):1079-1081.
doi: 10.1038/nature05719 pmid: 17460672 |
[44] | 张翼飞, 王炜, 梁存柱, 等. 内蒙古典型草原区芨芨草群落适生生境[J]. 生态学报, 2012,32(4):1193-1201. |
[ Zhang Yifei, Wang Wei, Liang Cunzhu, et al. Suitable habitat for the Achnatherum splendens community in typical steppe region of Inner Mongolia[J]. Acta Ecologica Sinica, 2012,32(4):1193-1201. ] |
[1] | MA Jilong, SHI Junhui, WANG Xinying, Aliya BAIDOURELA, LIU Maoxiu, Aijier ABULA. Effects of flood overflow on soil organic carbon and active components of Populus euphratica forest in the middle reaches of the Tarim River [J]. Arid Zone Research, 2023, 40(8): 1248-1257. |
[2] | MA Junmei,MA Jianping,MAN Duoqing,GUO Chunxiu,ZHANG Yunian,ZHAO Peng,WANG Fei,LI Yuanxing. Distribution and regeneration characteristics of natural Populus euphratica forests in Hexi Corridor and their relationship with soil factors [J]. Arid Zone Research, 2023, 40(2): 224-234. |
[3] | CHENG Qian,Tayierjiang AISHAN,Umut HALIK,WANG Xinying. Hollow tree characteristics of different aged Populus euphratica forests in the middle reaches of the Tarim River [J]. Arid Zone Research, 2023, 40(2): 247-256. |
[4] | LI Zehou,LI Ruixi,ZHANG Shubin,WANG Chongbin,ZHENG Mingming,DONG Yeqing,WU Xue. Responses of leaf structural and chemical trait of Tamarix ramosissima to soil water changes [J]. Arid Zone Research, 2022, 39(5): 1486-1495. |
[5] | SHEN Zhibo,HAN Yaoguang,WANG Jiali,CHEN Kangyi,HU Yang,ZHU Xinping,JIA Hongtao. Nitrogen deposition increases N2O emission in an alpine wetland in the arid region of Northwest China [J]. Arid Zone Research, 2022, 39(5): 1655-1662. |
[6] | WANG Zikang,JIAO Ayong,LING Hongbo,SHAN Qianjuan,ZHANG Guangpeng,WANG Wenqi. Characteristics of Populus euphratica root under various irrigation modes [J]. Arid Zone Research, 2022, 39(4): 1133-1142. |
[7] | JIANG Xiaofang,DUAN Hanchen,LIAO Jie,SONG Xiang,XUE Xian. Land use in the Gan-Lin-Gao region of middle reaches of Heihe River Basin based on a PLUS-SD coupling model [J]. Arid Zone Research, 2022, 39(4): 1246-1258. |
[8] | LI Pingping,WANG Xiaodan,CHEN Hailong. Study on the hydraulic connection between the Sugan Lake Wetland and the Kuitunnuoer Wetland [J]. Arid Zone Research, 2022, 39(2): 429-435. |
[9] | SONG Liangcui,MA Weiwei,LI Guang,LONG Yongchun,CHANG Wenhua. Effect of water on nitrogen mineralization in degraded succession of Gahai Wetland [J]. Arid Zone Research, 2022, 39(1): 165-175. |
[10] | WANG Yufang,ZHAO Chengzhang,ZENG Hongxia,KANG Manping,ZHAO Tingting,TANG Yurui. Spatial-temporal evolution of wetland landscape patterns and its influencing factors in the middle reaches of the Shule River [J]. Arid Zone Research, 2022, 39(1): 282-291. |
[11] | YANG Xuefeng,YE Mao,Munire Maimaiti. Structural parameter acquisition of Populus euphratica by WorldView-2 remote sensing image [J]. Arid Zone Research, 2021, 38(6): 1659-1667. |
[12] | ZENG Hongxia,ZHAO Chengzhang,WANG Yufang,LI Xiaoya,ZHAO Tingting,TANG Yurui. Landscape pattern evolution and its influencing factors of alpine wetland in Yanchi Bay [J]. Arid Zone Research, 2021, 38(6): 1771-1781. |
[13] | QIANG Yaohui,WANG Kunxin,MA Ning,ZHANG Yinsheng,GUO Yanhong. Characteristics of the radiation balance and surface albedo of a typical alpine wetland in Qiangtang Plateau [J]. Arid Zone Research, 2021, 38(5): 1207-1215. |
[14] | WANG Xiaofeng,YAN Yu,LI Yuehao,ZHANG Xing,FU Xinxin. Wetland landscape evolution and its driving factors in Yinchuan [J]. Arid Zone Research, 2021, 38(3): 855-866. |
[15] | YANG Lei,QU Xiangning,MA Zhenghu,ZHNAG Yuxun,TIAN Yuan,HE Zhirun. Water quality evaluation and spatial difference of Yuehai wetland in Ningxia [J]. Arid Zone Research, 2021, 38(3): 640-649. |
|