Arid Zone Research ›› 2022, Vol. 39 ›› Issue (5): 1655-1662.doi: 10.13866/j.azr.2022.05.29
• Ecology and Environment • Previous Articles Next Articles
SHEN Zhibo1(),HAN Yaoguang1,WANG Jiali1,CHEN Kangyi1,HU Yang1,ZHU Xinping1,2(),JIA Hongtao1,2
Received:
2022-01-14
Revised:
2022-06-13
Online:
2022-09-15
Published:
2022-10-25
Contact:
Xinping ZHU
E-mail:shenzhibo1996@163.com;zhuxinping1978@163.com
SHEN Zhibo,HAN Yaoguang,WANG Jiali,CHEN Kangyi,HU Yang,ZHU Xinping,JIA Hongtao. Nitrogen deposition increases N2O emission in an alpine wetland in the arid region of Northwest China[J].Arid Zone Research, 2022, 39(5): 1655-1662.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 2
Fitting relationship between N2O emissions and soil temperature (n=11)"
处理 | 方程 | R2 | P | |
---|---|---|---|---|
常年淹水区 | N0 | y=2.256lnx-6.407 | 0.137 | 0.262 |
N10 | y=-0.051x2+0.875x-1.594 | 0.348 | 0.181 | |
N20 | y=0.029x2+0.672x+6.933 | 0.082 | 0.713 | |
季节性淹水区 | N0 | y=-0.04x2+0.751x-3.42 | 0.409 | 0.122 |
N10 | y=-0.025x2+0.826x-4.040 | 0.511 | 0.041* | |
N20 | y=0.346x-0.939 | 0.701 | 0.001** | |
常年干燥区 | N0 | y=0.069x-1.962 | 0.111 | 0.831 |
N10 | y=0.241x-2.069 | 0.165 | 0.216 | |
N20 | y=0.179x+1.366 | 0.216 | 0.149 |
Tab. 3
Effect of nitrogen deposition on N2O emission rates from different ecosystems"
生态系统 | 施氮种类 | 氮添加量 /(kg·hm-2·a-1) | 对照组N2O平均排放速率 | 氮沉降对N2O排放的影响 |
---|---|---|---|---|
若尔盖高寒湿地[ | NH4NO3 | 0~80 | 13.00 μg·m-2·h-1 | 10~40 kg·hm-2·a-1显著促进(P<0.05),其余浓度无显著影响(P<0.05) |
青藏高原高寒草甸[ | NH4NO3 | 0~40 | 7.67 μg·m-2·h-1 | 显著促进(P<0.05) |
三江平原泥炭湿地[ | NH4NO3 | 0~80 | 6.60 μg·m-2·h-1 | 40 kg·hm-2·a-1显著促进(P<0.05),其余浓度无显著影响(P<0.05) |
昆仑山高寒草地[ | 尿素 | 0~16 | 50.00 μg·m-2· d-1 | 显著促进(P<0.05) |
水稻田[ | 尿素 | 0~480 | 0.88μg·m-2·h-1 | 显著促进(P<0.05) |
巴音布鲁克天鹅湖高寒湿地(本研究) | 尿素,NH4NO3 | 0~20 | 常年淹水区:45.75 μg·m-2·d-1 季节性淹水区:41.37 μg·m-2·d-1 常年干燥区:53.57 μg·m-2·d-1 | 显著促进(P<0.05) |
[1] | Pachauri R K, Allen M R, Barros V R, et al. Climate change 2014:Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. IPCC, 2014. |
[2] | Jylhä K, Tuomenvirta H, Ruosteenoja K. Climate change projections for Finland during the 21 st century[J]. Boreal Environment Research, 2004, 9(2): 127-152. |
[3] | 胡保安, 贾宏涛, 朱新萍, 等. 不同水分条件下巴音布鲁克天鹅湖高寒湿地夏季N2O日排放特征[J]. 生态环境学报, 2015, 24(5): 811-817. |
[Hu Bao’an, Jia Hongtao, Zhu Xinping, et al. Daily characteristics of summer N2O emission under different water conditions at Bayinbuluke Swan Lake alpine wetland[J]. Ecology and Environmental Sciences, 2015, 24(5): 811-817. ] | |
[4] |
Yang J, Liu J, Hu X, et al. Effect of water table level on CO2, CH4 and N2O emissions in a freshwater marsh of Northeast China[J]. Soil Biology and Biochemistry, 2013, 61: 52-60.
doi: 10.1016/j.soilbio.2013.02.009 |
[5] |
Regina K, Nykänen H, Silvola J, et al. Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity[J]. Biogeochemistry, 1996, 35(3): 401-418.
doi: 10.1007/BF02183033 |
[6] |
Jauhiainen J, Silvennoinen H, Hämäläinen R, et al. Nitrous oxide fluxes from tropical peat with different disturbance history and management[J]. Biogeosciences, 2012, 9(4): 1337-1350.
doi: 10.5194/bg-9-1337-2012 |
[7] |
Ackerman D, Millet D B, Chen X. Global estimates of inorganic nitrogen deposition across four decades[J]. Global Biogeochemical Cycles, 2019, 33(1): 100-107.
doi: 10.1029/2018GB005990 |
[8] |
曹登超, 高霄鹏, 李磊, 等. 氮磷添加对昆仑山北坡高山草地N2O排放的影响[J]. 植物生态学报, 2019, 43(2): 165-173.
doi: 10.17521/cjpe.2018.0267 |
[Cao Dengchao, Gao Xiaopeng, Li Lei, et al. Effects of nitrogen and phosphorus additions on nitrous oxide emissions from alpine grass-land in the northern slope of Kunlun Mountains, China[J]. Chinese Journal of Plant Ecology, 2019, 43(2): 165-173. ]
doi: 10.17521/cjpe.2018.0267 |
|
[9] | 张艺, 王春梅, 许可, 等. 若尔盖湿地土壤温室气体排放对模拟氮沉降增加的初期响应[J]. 北京林业大学学报, 2016, 38(8): 54-63. |
[Zhang Yi, Wang Chunmei, Xu Ke, et al. Short-term effect of increasing nitrogen deposition on greenhouse gas emissions in Zoige wetland, western China[J]. Journal of Beijing Forestry University, 2016, 38(8): 54-63. ] | |
[10] | 宋亚娜, 林艳, 陈子强. 氮肥水平对稻田细菌群落及N2O排放的影响[J]. 中国生态农业学报, 2017, 25(9): 1266-1275. |
[Song Ya’na, Lin Yan, Chen Ziqiang. Effect of nitrogen fertilizer level on bacterial community and N2O emission in paddy soil[J]. Chinese Journal of Eco-Agriculture, 2017, 25(9): 1266-1275. ] | |
[11] | 陈思, 张克强, 麻晓越, 等. 外源硝态氮对典型耕作土壤冻结过程N2O排放的影响[J]. 环境科学研究, 2014, 27(6): 635-641. |
[Chen Si, Zhang Keqiang, Ma Xiaoyue, et al. Effects of nitrate nitrogen application on N2O emissions from three types of soil during freezing process[J]. Research of Environmental Sciences, 2014, 27(6): 635-641. ] | |
[12] | 王孟雪. 东北寒地稻作水氮互作的温室气体排放特征研究[D]. 哈尔滨: 东北农业大学, 2016. |
[Wang Mengxue. Greenhouse Gases Emissions from Rice Paddy Field under Different Water and Nitrogenous Interaction in Cold Region of Northeast China[D]. Harbin: Northeast Agricultural University, 2016. ] | |
[13] | 葛怡情. 增温氮沉降对藏北高寒草甸N2O排放的影响[D]. 呼和浩特: 内蒙古大学, 2020. |
[Ge Yiqing. Effects of Warming and Nitrogen Deposition on N2O Emission in a Meadow in North Tibet[D]. Hohhot: Inner Mongolia Agricultural University, 2020. ] | |
[14] | 胡保安, 贾宏涛, 朱新萍, 等. 巴音布鲁克高寒湿地夏季CO2和CH4通量日变化研究[J]. 干旱区资源与环境, 2016, 30(6): 167-172. |
[Hu Bao’an, Jia Hongtao, Zhu Xinping, et al. Daily characteristics of summer CO2 and CH4 fluxes under different water conditions at Bayinbuluke alpine wetland[J]. Journal of Arid Land Resources and Environment, 2016, 30(6): 167-172. ] | |
[15] | 徐静静. 巴音布鲁克天鹅湖高寒湿地土壤微生物群落结构及酶活性特征[D]. 乌鲁木齐: 新疆农业大学, 2018. |
[Xu Jingjing. Soil Microbial Community Structure and Enzymatic Activity in Swan Lake Alpine Wetland of Bayanbulak[D]. Urumqi: Xinjiang Agricultural University, 2018. ] | |
[16] |
Li K, Gong Y, Wei S, et al. Responses of CH4, CO2 and N2O fluxes to increasing nitrogen deposition in alpine grassland of the Tianshan Mountains[J]. Chemosphere, 2012, 88(1): 140-143.
doi: 10.1016/j.chemosphere.2012.02.077 |
[17] |
Bobbink R, Hicks K, Galloway J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis[J]. Ecological Applications, 2010, 20: 30-59.
doi: 10.1890/08-1140.1 |
[18] |
Liu X, Zhang Y, Han W, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438): 459-462.
doi: 10.1038/nature11917 |
[19] | Wu H, Wang X, Ganjurjav H, et al. Effects of increased precipitation combined with nitrogen addition and increased temperature on methane fluxes in alpine meadows of the Tibetan Plateau[J]. Science of the Total Environment, 2020, 705: 135818. |
[20] |
Fluckiger J, Dallenbach A, Blunier T. Variations in atmospheric N2O concentration during abrupt climatic changes[J]. Science, 1999, 285(5425): 227.
pmid: 10398593 |
[21] | Fuka M M, Braker S H G, Philippot L. Molecular tools to assess the diversity and density of denitrifying bacteria in their habitats[C]// Elsevier: Biology of the Nitrogen Cycle, 2007: 313-330. |
[22] | Davidson E A. Fluxes of Nitrous Oxide and Nitric Oxide from Terrestrial Ecosystems[M]. Washington: American Society for Microbiology, 1991: 219-235. |
[23] | 杨紫唯, 车子涵, 刘芙梅, 等. 降水梯度对青海湖河源湿地温室气体排放日变化的影响[J]. 干旱区研究, 2022, 39(3): 754-766. |
[Yang Ziwei, Che Zihan, Liu Fumei, et al. Precipitation gradient influence on daily greenhouse gas emission fluxes from a Qinghai Lake wetland[J]. Arid Zone Research, 2022, 39(3): 754-766. ] | |
[24] | 徐华, 邢光喜, 蔡祖聪, 等. 土壤水分状况和质地对稻田N2O排放的影响[J]. 土壤学报, 2000, 37(4): 499-505. |
[Xu Hua, Xing Guangxi, Cai Zucong, et al. Effect of soil water regime and soil texture on N2O emission from rice paddy field[J]. Acta Pedologica Sinica, 2000, 37(4): 499-505. ] | |
[25] | Mentzer J L, Goodman R M, Balser T C. Microbial response over time to hydrologic and fertilization treatments in a simulated wet prairie[J]. Plant & Soil, 2006, 284(1-2): 85-100. |
[26] | 李英臣, 宋长春, 刘德燕. 湿地土壤N2O排放研究进展[J]. 湿地科学, 2008, 6(2): 124-129. |
[Li Yingchen, Song Changchun, Liu Deyan. Advances in studies of N2O emission in wetland soils[J]. Wetland Science, 2008, 6(2): 124-129. ] | |
[27] |
Yan Y, Hasbagan G, Hu G, et al. Nitrogen deposition induced significant increase of N2O emissions in an dry alpine meadow on the central Qinghai-Tibetan Plateau[J]. Agriculture Ecosystems & Environment, 2018, 265: 45-53.
doi: 10.1016/j.agee.2018.05.031 |
[28] | Firestone M, Davidson E. Microbiological basis of NO and N2O production and consumption in soil[J]. Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere, 1989, 47: 7-21. |
[29] | Qu S, Xu R, Yu J, et al. Nitrogen deposition accelerates greenhouse gas emissions at an alpine steppe site on the Tibetan Plateau[J]. Science of the Total Environment, 2020, 765(1): 144277. |
[30] | 梁艳, 干珠扎布, 曹旭娟, 等. 模拟氮沉降对藏北高寒草甸温室气体排放的影响[J]. 生态学报, 2017, 37(2): 485-494. |
[Liang Yan, Hasbagan Ganjurjav, Cao Xujuan, et al. Effects of simulated nitrogen deposition on greenhouse gas emissions from alpine meadows in northern Tibet[J]. Acta Ecologica Sinica, 2017, 37(2): 485-494. ] | |
[31] | 王肖娟, 王永强, 赵双玲, 等. 不同灌溉方式及施肥量对稻田土壤N2O排放的影响[J]. 大麦与谷类科学, 2018, 35(3): 1-4, 21. |
[Wang Xiaojuan, Wang Yongqiang, Zhao Shuangling, et al. Effects of drip irrigation and flood irrigation under different application rates of nitrogen fertilizer on N2O emission in rice field[J]. Barley and Cereal Sciences, 2018, 35(3): 1-4, 21. ] | |
[32] | 宋长春, 张丽华, 王毅勇, 等. 淡水沼泽湿地CO2、CH4和N2O排放通量年际变化及其对氮输入的响应[J]. 环境科学, 2006, 27(12): 2369-2375. |
[Song Changchun, Zhang Lihua, Wang Yiyong, et al. Annual dynamics of CO2, CH4, N2O emissions from freshwater marshes and affected by nitrogen fertilization[J]. Environmental Science, 2006, 27(12): 2369-2375. ] | |
[33] | 黄耀, 焦燕, 宗良纲, 等. 土壤理化特性对麦田N2O排放影响的研究[J]. 环境科学学报, 2002, 22(5): 598-602. |
[Huang Yao, Jiao Yan, Zong Lianggang, et al. N2O emission from wheat cultivated soils as influenced by soil physicochemical properties[J]. Acta Scientiae Circumstantiae, 2002, 22(5): 598-602. ] | |
[34] | 张荣涛, 隋心, 许楠, 等. 三江平原小叶章湿地温室气体排放及其对模拟氮沉降的响应[J]. 应用生态学报, 2018, 29(10): 3191-3198. |
[Zhang Rongtao, Sui Xin, Xu Nan, et al. Responses of greenhouse gas emission to simulated nitrogen deposition in Calamagrostis angustifolia wetlands of Sanjiang Plain, China[J]. Chinese Journal of Applied Ecology, 2018, 29(10): 3191-3198. ] | |
[35] |
杨兰芳, 蔡祖聪. 施氮和玉米生长对土壤氧化亚氮排放的影响[J]. 应用生态学报, 2005, 16(1): 100-104.
pmid: 15852966 |
[Yang Lanfang, Cai Zucong. Effects of N application and maize growth on N2O emission from soil[J]. Chinese Journal of Applied Ecology, 2005, 16(1): 100-104. ]
pmid: 15852966 |
|
[36] | 魏达, 旭日, 王迎红, 等. 青藏高原纳木错高寒草原温室气体通量及与环境因子关系研究[J]. 草地学报, 2011, 19(3): 412-419. |
[Wei Da, Xu Ri, Wang Yinghong, et al. CH4, N2O and CO2 fluxes and correlation with environmental factors of alpine steppe grassland in Nam Co Region of Tibetan Plateau[J]. Acta Agrestia Sinica, 2011, 19(3): 412-419. ] | |
[37] | 胡保安. 天鹅湖高寒湿地CO2、CH4和N2O排放对水分变化的响应[D]. 乌鲁木齐: 新疆农业大学, 2017. |
[Hu Bao’an. Response of CO2, CH4 and N2O Emissions to Water Change in the Alpine Wetland of Swan Lake[D]. Urumqi: Xinjiang Agricultural University, 2017. ] |
|