Arid Zone Research ›› 2023, Vol. 40 ›› Issue (7): 1172-1183.doi: 10.13866/j.azr.2023.07.14
• Ecology and Environment • Previous Articles Next Articles
BAO Yubin1(),WANG Yaozong2,LU Feng1,LIU Zizeng1,MA Dawei1,YANG Yong1,WU Juan1,ZHANG Yongkang1
Received:
2022-12-23
Revised:
2023-03-24
Online:
2023-07-15
Published:
2023-08-01
BAO Yubin,WANG Yaozong,LU Feng,LIU Zizeng,MA Dawei,YANG Yong,WU Juan,ZHANG Yongkang. Construction of an ecological security pattern and zoning optimization for territorial space in the Liupan Mountain Area[J].Arid Zone Research, 2023, 40(7): 1172-1183.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Methods for evaluating the importance of ecosystems"
生态系统服务 | 权重 | 评估模型/方法 | 基本原理及计算公式 |
---|---|---|---|
生境维持 | 0.417 | InVEST-Habitat Quality model | 式中:Qxj为土地利用类型j中栅格x的生境质量;Dxj为土地利用类型j中栅格x所受胁迫水平;k为半饱和常数,通常取Dxj最大值的一半;Hj为土地利用类型j的生境适合性;z为归一化常量[ |
产水服务 | 0.316 | InVEST-Water Yield model | 式中:Yjx为土地利用类型j中栅格x的年产水量(mm);Px为栅格单元x的年均降雨量;AETxj为土地利用类型j中栅格x的年平均蒸散发量;Rxj为土地利用类型j中栅格x的干燥指数,表示潜在蒸发量与降雨量的比值;ωx为修正植被年可利用水量与降水量的比值;k为植被系数,由植被叶面积指数计算[ |
土壤保持 | 0.146 | InVEST-Sediment Delivery Ratio model | 式中:SCx和SRx分别为栅格x的土壤保持量(t·hm-2·a-1)和泥沙持留量(t·hm-2·a-1);SEy为上坡栅格y产生的泥沙量(t·hm-2·a-1),Ex为栅格x的泥沙持留效率[ |
固碳服务 | 0.082 | CASA模型-NPP法 | 式中:NPP(x, t)为栅格x的植被在t时段内的净初级生产力(g C·m-2·a-1);APAR(x, t)为栅格x在t时段内植被所吸收的光和有效辐射;ξ(x, t)为栅格x的植被在t时段内的光能转化率[ |
粮食供给 | 0.038 | NDVI配比法 | 式中:Cropmn为第n个县第m个栅格的粮食供给服务(t·a-1);NDVIm为该栅格全年中的NDVI最大值;NDVIn为第n个县的NDVI全年最大值的和;Cropn为第n个县的粮食年产量(t·a-1)[ |
Tab. 2
Construction of ecological resistance surface"
阻力因子 | 权重 | 阻力值 | ||||||
---|---|---|---|---|---|---|---|---|
1 | 10 | 30 | 50 | 70 | 90 | |||
自然环境因子 | 土地覆被类型 | 0.269 | 森林、湿地 | 灌丛、草地 | 农田 | 荒漠 | 其他 | 城镇 |
植被覆盖度/% | 0.172 | - | ≥70 | 50~70 | 30~50 | 10~30 | <10 | |
距离水体距离/km | 0.127 | - | <1 | 1~3 | 3~5 | 5~10 | ≥10 | |
干旱指数 | 0.090 | - | <0.45 | 0.45~0.58 | 0.58~0.66 | 0.66~0.71 | ≥0.71 | |
坡度/(°) | 0.056 | - | <6 | 6~15 | 15~25 | 25~45 | ≥45 | |
水土流失敏感性 | 0.036 | - | 一般敏感 | 较敏感 | 中度敏感 | 高度敏感 | 极敏感 | |
社会经济因子 | 距离居民点/km | 0.103 | - | ≥2 | 1~2 | 0.5~1 | 0.25~0.5 | <0.25 |
距离采矿/km | 0.073 | ≥15 | 10~15 | 5~10 | 2~5 | 1~2 | <10 | |
距离道路/km | 0.047 | ≥10 | 5~10 | 2~5 | 1~2 | 0.5~1 | <0.5 | |
夜间灯光因子 | 0.027 | <0.21 | 0.21~0.48 | 0.48~0.74 | 0.74~1.79 | ≥1.79 |
Tab. 7
Identification of ecological corridors, pinch points and barriers"
电流、电阻值 | 生态类型 | 阈值 | 类型 | 数量/个 | 比重/% | 面积、长度 | 比重/% |
---|---|---|---|---|---|---|---|
电流值 | 生态廊道 | 2.0~80.8 | 一般廊道 | 45 | 32.6 | 579.0 km | 48.1 |
80.8~162.5 | 重要廊道 | 46 | 33.3 | 413.1 km | 34.3 | ||
162.5~616.0 | 关键廊道 | 47 | 34.1 | 211.6 km | 17.6 | ||
总计 | 138 | 100.0 | 1203.7 km | 100.0 | |||
电流值 | 生态夹点 | 0.02~0.27 | ≤1 km2夹点 | 455 | 83.2 | 37.6 km2 | 6.0 |
1~5 km2夹点 | 57 | 10.4 | 148.1 km2 | 23.6 | |||
≥5 km2 夹点 | 35 | 6.4 | 441.2 km2 | 70.4 | |||
总计 | 547 | 100.0 | 626.9 km2 | 100.0 | |||
电阻值 | 生态障碍点 | 36.2~92.7 | ≤1 km2 障碍点 | 146 | 67.3 | 31.7 km2 | 3.5 |
1~5 km2 障碍点 | 42 | 19.3 | 103.4 km2 | 11.6 | |||
≥5 km2 障碍点 | 29 | 13.4 | 758.8 km2 | 84.9 | |||
总计 | 217 | 100.0 | 893.9 km2 | 100.0 |
[1] | 王聪, 伍星, 傅伯杰, 等. 重点脆弱生态区生态恢复模式现状与发展方向[J]. 生态学报, 2019, 39(20): 7333-7343. |
[Wang Cong, Wu Xing, Fu Bojie, et al. Ecological restoration in the key ecologically vulnerable regions: Current situation and development direction[J]. Acta Ecologica Sinica, 2019, 39(20): 7333-7343. ] | |
[2] |
易行, 白彩全, 梁龙武, 等. 国土生态修复研究的演进脉络与前沿进展[J]. 自然资源学报, 2020, 35(1): 37-52.
doi: 10.31497/zrzyxb.20200105 |
[Yi Xing, Bai Caiquan, Liang Longwu, et al. The evolution and frontier development of land ecological restoration research[J]. Journal of Natural Resources, 2020, 35(1): 37-52. ]
doi: 10.31497/zrzyxb.20200105 |
|
[3] |
彭建, 赵会娟, 刘焱序, 等. 区域生态安全格局构建研究进展与展望[J]. 地理研究, 2017, 36(3): 407-419.
doi: 10.11821/dlyj201703001 |
[Peng Jian, Zhao Huijuan, Liu Yanxu, et al. Research progress and prospect on regional ecological security pattern construction[J]. Geographical Research, 2017, 36(3): 407-419. ]
doi: 10.11821/dlyj201703001 |
|
[4] |
陈昕, 彭建, 刘焱序, 等. 基于“重要性—敏感性—连通性”框架的云浮市生态安全格局构建[J]. 地理研究, 2017, 36(3): 471-484.
doi: 10.11821/dlyj201703006 |
[Chen Xin, Peng Jian, Liu Yanxu, et al. Constructing ecological security patterns in Yunfu City based on the framework of importance-sensitivity-connectivity[J]. Geographical Research, 2017, 36(3): 471-484. ]
doi: 10.11821/dlyj201703006 |
|
[5] | 张亮, 岳文泽, 陈阳. 基于斑块复合属性特征的城市生态安全格局构建——以杭州市为例[J]. 生态学报, 2021, 41(11): 4632-4640. |
[Zhang Liang, Yue Wenze, Chen Yang. Construction of urban ecological security pattern based on of patch composite characteristics: A case study of Hangzhou[J]. Acta Ecologica Sinica, 2021, 41(11): 4632-4640. ] | |
[6] | 俞孔坚, 李海龙, 李迪华, 等. 国土尺度生态安全格局[J]. 生态学报, 2009, 29(10): 5163-5175. |
[Yu Kongjian, Li Hailong, Li Dihua, et al. National scale ecological security pattern[J]. Acta Ecologica Sinica, 2009, 29(10): 5163-5175. ] | |
[7] |
侯鹏, 王桥, 申文明, 等. 生态系统综合评估研究进展: 内涵、框架与挑战[J]. 地理研究, 2015, 34(10): 1809-1823.
doi: 10.11821/dlyj201510001 |
[Hou Peng, Wang Qiao, Shen Wenming, et al. Progress of integrated ecosystem assessment: Concept, framework and challenges[J]. Geographical Research, 2015, 34(10): 1809-1823. ]
doi: 10.11821/dlyj201510001 |
|
[8] |
彭建, 李慧蕾, 刘焱序, 等. 雄安新区生态安全格局识别与优化策略[J]. 地理学报, 2018, 73(4): 701-710.
doi: 10.11821/dlxb201804009 |
[Peng Jian, Li Huilei, Liu Yanxu, et al. Identification and optimization of ecological security pattern in Xiong’an New Area[J]. Acta Geographica Sinica, 2018, 73(4): 701-710. ]
doi: 10.11821/dlxb201804009 |
|
[9] |
韩宗伟, 焦胜, 胡亮, 等. 廊道与源地协调的国土空间生态安全格局构建[J]. 自然资源学报, 2019, 34(10): 2244-2256.
doi: 10.31497/zrzyxb.20191019 |
[Han Zongwei, Jiao Sheng, Hu Liang, et al. Construction of ecological security pattern based on coordination between corridors and sources in national territorial space[J]. Journal of Natural Resources, 2019, 34(10): 2244-2256. ]
doi: 10.31497/zrzyxb.20191019 |
|
[10] |
赵文祯, 韩增林, 闫晓露, 等. 基于生态系统服务多情景权衡的生态安全格局构建——以大连市瓦房店为例[J]. 自然资源学报, 2020, 35(3): 546-562.
doi: 10.31497/zrzyxb.20200304 |
[Zhao Wenzhen, Han Zenglin, Yan Xiaolu, et al. Ecological security pattern construction based on multi-scenario trade-off of ecosystem services: A case study of Wafangdian, Dalian[J]. Journal of Natural Resources, 2020, 35(3): 546-562. ]
doi: 10.31497/zrzyxb.20200304 |
|
[11] | 徐智超, 刘华民, 韩鹏, 等. 内蒙古生态安全时空演变特征及驱动力[J]. 生态学报, 2021, 41(11): 4354-4366. |
[Xu Zhichao, Liu Huamin, Han Peng, et al. Analysis of the characteristics and driving forces of the temporal and spatial evolution of ecological security in Inner Mongolia[J]. Acta Ecologica Sinica, 2021, 41(11): 4354-4366. ] | |
[12] | 吴金华, 刘思雨, 白帅. 基于景观生态安全的神木市生态廊道识别与优化[J]. 干旱区研究, 2021, 38(4): 1120-1127. |
[Wu Jinhua, Liu Siyu, Bai Shuai. Identification and optimization of ecological corridors in Shenmu City based on landscape ecological security[J]. Arid Zone Research, 2021, 38(4): 1120-1127. ] | |
[13] | 于成龙, 刘丹, 冯锐, 等. 基于最小累积阻力模型的东北地区生态安全格局构建[J]. 生态学报, 2021, 41(1): 290-301. |
[Yu Chenglong, Liu Dan, Feng Rui, et al. Construction of ecological security pattern in Northeast China based on MCR model[J]. Acta Ecologica Sinica, 2021, 41(1): 290-301. ] | |
[14] | 毛诚瑞, 代力民, 齐麟, 等. 基于生态系统服务的流域生态安全格局构建——以辽宁省辽河流域为例[J]. 生态学报, 2020, 40(18): 6486-6494. |
[Mao Chengrui, Dai Limin, Qi Lin, et al. Constructing ecological security pattern based on ecosystem services: A case study in Liaohe River Basin, Liaoning Province, China[J]. Acta Ecologica Sinica, 2020, 40(18): 6486-6494. ] | |
[15] | 付凤杰, 刘珍环, 刘海. 基于生态安全格局的国土空间生态修复关键区域识别——以贺州市为例[J]. 生态学报, 2021, 41(9): 3406-3414. |
[Fu Fengjie, Liu Zhenhuan, Liu Hai. Identifying key areas of ecosystem restoration for territorial space based on ecological security pattern: A case study in Hezhou City[J]. Acta Ecologica Sinica, 2021, 41(9): 3406-3414. ] | |
[16] | 吴健生, 罗可雨, 马洪坤, 等. 基于生态系统服务与引力模型的珠三角生态安全与修复格局研究[J]. 生态学报, 2020, 40(23): 8417-8429. |
[Wu Jiansheng, Luo Keyu, Ma Hongkun, et al. Ecological security and restoration pattern of Pearl River Delta, based on ecosystem service and gravity model[J]. Acta Ecologica Sinica, 2020, 40(23): 8417-8429. ] | |
[17] |
McRae B H, Beier P. Circuit theory predicts gene flow in plant and animal populations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(50): 19885-19890.
doi: 10.1073/pnas.0706568104 pmid: 18056641 |
[18] |
Walpole A A, Bowman J, Murray D L, et al. Functional connectivity of lynx at their southern range periphery in Ontario, Canada[J]. Landscape Ecology, 2012, 27(5): 761-773.
doi: 10.1007/s10980-012-9728-1 |
[19] | 苏冲, 董建权, 马志刚, 等. 基于生态安全格局的山水林田湖草生态保护修复优先区识别——以四川省华蓥山区为例[J]. 生态学报, 2019, 39(23): 8948-8956. |
[Su Chong, Dong Jianquan, Ma Zhigang, et al. Identifying priority areas for ecological protection and restoration of mountains-rivers-forests-farmlands-lakes-grasslands based on ecological security patterns: A case study in Huaying Mountain, Sichuan Province[J]. Acta Ecologica Sinica, 2019, 39(23): 8948-8956. ] | |
[20] | 林勇, 樊景凤, 温泉, 等. 生态红线划分的理论和技术[J]. 生态学报, 2016, 36(5): 1244-1252. |
[Lin Yong, Fan Jingfeng, Wen Quan, et al. Primary exploration of ecological theories and technologies for delineation of ecological redline zones[J]. Acta Ecologica Sinica, 2016, 36(5): 1244-1252. ] | |
[21] |
方莹, 王静, 黄隆杨, 等. 基于生态安全格局的国土空间生态保护修复关键区域诊断与识别——以烟台市为例[J]. 自然资源学报, 2020, 35(1): 190-203.
doi: 10.31497/zrzyxb.20200116 |
[Fang Ying, Wang Jing, Huang Longyang, et al. Determining and identifying key areas of ecosystem preservation and restoration for territorial spatial planning based on ecological security patterns: A case study of Yantai City[J]. Journal of Natural Resources, 2020, 35(1): 190-203. ]
doi: 10.31497/zrzyxb.20200116 |
|
[22] | 胡胜, 曹明明, 李婷, 等. 基于AHP和GIS的陕西省地震次生地质灾害危险性评价[J]. 第四纪研究, 2014, 34(2): 336-345. |
[Hu Sheng, Cao Mingming, Li Ting, et al. Danger assessment of earthouake-induced geological disasters in Shaanxi Provinces based on AHP and GIS[J]. Quaternary Sciences, 2014, 34(2): 336-345. ] | |
[23] | 包玉斌. 基于InVEST模型的宁夏生物多样性保护优先区域生境评估与生态廊道构建[J]. 宁夏大学学报(自然科学版), 2022, 43(3): 318-324. |
[Bao Yubin. Habitat evaluation and ecological corridor construction of priority area for biodiversity conservation in Ningxia based on InVEST model[J]. Journal of Ningxia University (Natural Science Edition), 2022, 43(3): 318-324. ] | |
[24] | 包玉斌. 基于InVEST模型的陕北黄土高原生态服务功能时空变化研究[D]. 西安: 西北大学, 2015. |
[Bao Yubin. Temporal and Spatial Change of Ecological Services on Loess Plateau of Shaanxi by InVEST model[D]. Xi’an: Northwest University, 2015. ] | |
[25] |
包玉斌, 李婷, 柳辉, 等. 基于InVEST模型的陕北黄土高原水源涵养功能时空变化[J]. 地理研究, 2016, 35(4): 664-676.
doi: 10.11821/dlyj201604006 |
[Bao Yubin, Li Ting, Liu Hui, et al. Spatial and temporal changes of water conservation of Loess Plateau in northern Shaanxi Province by InVEST model[J]. Geographical Research 2016, 35(4): 664-676. ]
doi: 10.11821/dlyj201604006 |
|
[26] | 包玉斌, 刘康, 李婷, 等. 基于InVEST模型的土地利用变化对生境的影响——以陕西省黄河湿地自然保护区为例[J]. 干旱区研究, 2015, 32(3): 622-629. |
[Bao Yubin, Liu Kang, Li Ting, et al. Effects of land use change on habitat based on InVEST model: Taking Yellow River Wetland Nature Reserve in Shaanxi Province as an example[J]. Arid Zone Research, 2015, 32(3): 622-629. ] | |
[27] | 王晓玉, 冯喆, 吴克宁, 等. 基于生态安全格局的山水林田湖草生态保护与修复[J]. 生态学报, 2019, 39(23): 8725-8732. |
[Wang Xiaoyu, Feng Zhe, Wu Kening, et al. Eeological conservation and restoration of life community theory based on the construction of ecological security pattern[J]. Acta Ecologica Sinica, 2019, 39(23): 8725-8732. ] | |
[28] | 高梦雯, 胡业翠, 李向, 等. 基于生态系统服务重要性和环境敏感性的喀斯特山区生态安全格局构建——以广西河池为例[J]. 生态学报, 2021, 41(7): 2596-2608. |
[Gao Mengwen, Hu Yecui, Li Xiang, et al. Construction of ecological security pattern based on the importance of ecosystem services and environmental sensitivity in karst mountainous areas: A case study in Hechi, Guangxi[J]. Acta Ecologica Sinica, 2021, 41(7): 2596-2608. ] | |
[29] | McRae B H, Kavanagh D M. Linkage Mapper Connectivity Analysis Software and User Guide[EB/OL]. https://circuitscape.org/linkagemapper , 2021-07-01. |
[30] | McRae B H. Barrier Mapper Connectivity Analysis Software and User Guide[EB/OL]. https://circuitscape.org/linkagemapper/ , 2021-07-01. |
[31] | McRae B H. Centrality Mapper Connectivity Analysis Software and User Guide[EB/OL]. https://circuitscape.org/linkagemapper , 2021-07-01. |
|