Arid Zone Research ›› 2023, Vol. 40 ›› Issue (7): 1184-1193.doi: 10.13866/j.azr.2023.07.15
• Ecology and Environment • Previous Articles Next Articles
DU Huijuan1(),WANG Guangyao1,2,3(),RAN Guangyan1,LYU Mi1
Received:
2022-09-29
Revised:
2023-02-20
Online:
2023-07-15
Published:
2023-08-01
DU Huijuan, WANG Guangyao, RAN Guangyan, LYU Mi. Agricultural gray water footprint in the Tarim River Basin using SDGs analysise[J].Arid Zone Research, 2023, 40(7): 1184-1193.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Agricultural grey water footprint indicators and attributes for SDGs"
指标 | 指标含义 | 对应SDGs目标 | 基于SDGs目标的可持续发展意蕴 |
---|---|---|---|
种植业灰水足迹 | 种植业总氮排放所造成的地下水污染 | 水环境与卫生(SDG6) | 稀释水体中种植业氮元素污染所需要的淡水体积,表示水体的污染程度 |
畜牧业灰水足迹 | 畜牧业总氮排放所造成的地下水污染 | 水环境与卫生(SDG6) | 稀释水体中畜牧业氮元素污染所需要的淡水体积,表示水体的污染程度 |
农业灰水足迹 | 农业总氮排放所造成的地下水污染 | 水环境与卫生(SDG6) | 稀释水体中农业氮元素污染所需要的淡水体积,表示水体的污染程度 |
农业灰水足迹强度 | 单位耕地面积污染量 | 可持续农业(SDG2) | 农业面源污染压力 |
农业灰水足迹效率 | 农业生产发展程度 | 可持续农业(SDG2) | 农业可持续发展水平 |
[1] | 周全, 董战峰, 吴语晗, 等. 中国实现2030年可持续发展目标进程分析与对策[J]. 中国环境管理, 2019, 11(1): 23-28. |
[Zhou Quan, Dong Zhanfeng, Wu Yuhan, et al. The status and countermeasures for China’s achievement of the 2030 sustainable development goals[J]. Chinese Journal of Environmental Management, 2019, 11(1): 23-28. ] | |
[2] |
John Maurice. UN set to change the world with new development goals[J]. The Lancet, 2015, 386: 1121-1124.
doi: 10.1016/S0140-6736(15)00251-2 |
[3] | 朱婧, 孙新章, 付宏鹏. 可持续发展目标(SDGs)理论与实践研究[M]. 沈阳: 东北大学出版社, 2019. |
[Zhu Jing, Sun Xinzhang, Fu Hongpeng. Research on Theory and Practice of Sustainable Development Goals (SDGs)[M]. Shenyang: Northeastern University Press, 2019. ] | |
[4] |
程清平, 钟方雷, 左小安, 等. 美丽中国与联合国可持续发展目标(SDGs)结合的黑河流域水资源承载力评价[J]. 中国沙漠, 2020, 40(1): 204-214.
doi: 10.7522/j.issn.1000-694X.2019.00103 |
[Cheng Qingping, Zhong Fanglei, Zuo Xiao’an, et al. Evaluationof water resources carrying capacity of Heihe River Basin combining beautiful China with SDGs[J]. Journal of Desert Research, 2020, 40(1): 204-214. ]
doi: 10.7522/j.issn.1000-694X.2019.00103 |
|
[5] | Hoekstra A Y, Chapagain A K. Globalization of water: Sharing the planet’s freshwater resources[J]. Water Encyclopedia, 2008, 43(2): 147. |
[6] | Hoekstra A Y, Chapagain A K, Aldaya M M, et al. The Water Footprint Assessment Manual: Setting the Global Standard[M]. London: Earthscan, 2011: 30-40. |
[7] |
CHapagain A K, HOekstra A Y, Savenije H H G, et al. The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries[J]. Ecological Economics, 2006, 60(1): 186-203.
doi: 10.1016/j.ecolecon.2005.11.027 |
[8] | 傅春, 陈毓迪, 刘业忠, 等. 江西省农田灰水足迹时空分析[J]. 农业环境科学学报, 2022, 41(7): 1501-1508. |
[Fu Chun, Chen Yudi, Liu Yezhong, et al. Temporal and spatial analysis of grey water footprint in Jiangxi Province farmland[J]. Journal of Agro-Environment Science, 2022, 41(7): 1501-1508. ] | |
[9] | 孙诗阶, 许朗, 陈杰. 农业灰水足迹与农业经济增长的脱钩关系研究——基于长江经济带11省市的实证分析[J]. 节水灌溉, 2022, 322(6): 17-23. |
[Sun Shijie, Xu Lang, Chen Jie. A study on the decoupling relationship between agricultural grey water footprint and agricultural economic growth:Based on the empirical analysis of 11 provinces and cities in the Yangtze River Economic Belt[J]. Water Saving Irrigation, 2022, 322(6): 17-23. ] | |
[10] | 吴兆磊, 吴兆丹, 祖晓倩. 基于灰水足迹视角的浙江省工业出口结构优化研究[J]. 华北水利水电大学学报(自然科学版), 2018, 39(2): 40-45. |
[Wu Zhaolei, Wu Zhaodan, Zu Xiaoqian. Optimization of industrial export structure in Zhejiang Province in the perspective of grey water footprint[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2018, 39(2): 40-45. ] | |
[11] | 班荣舶, 张磊, 曹跃杰. 基于灰水足迹的安顺市工业经济增长与水环境协调关系分析[J]. 水电能源科学, 2017, 35(6): 120-123. |
[Ban Rongbo, Zhang Lei, Cao Yuejie. Analysis of cooperative development between water environment and industrial economy growth in Anshun City based on grey water foot-print[J]. Water Resources and Power, 2017, 35(6): 120-123. ] | |
[12] | 李啸虎, 杨德刚. 水足迹视角下干旱区城市工业结构优化研究——以乌鲁木齐市为例[J]. 中国人口·资源与环境, 2015, 25(5): 170-176. |
[Li Xiaohu, Yang Degang. Structure optimization of urban industy in arid land based on water footprint: A case study of Urumqi[J]. China Population, Resources and Environment, 2015, 25(5): 170-176. ] | |
[13] |
Andreea E, Teodosiu C. Grey water footprint assessment and challenges for its implementation[J]. Environmental Engineering and Management Journal, 2011, 10(3): 333-340.
doi: 10.30638/eemj.2011.049 |
[14] | 洪传春, 刘某承, 张雅静, 等. 时空视角下京津冀农业灰水足迹强度与效率分析[J]. 河北农业大学学报, 2021, 44(2): 128-135. |
[Hong Chuanchun, Liu Moucheng, Zhang Yajing, et al. Analysis on the intensity and efficiency of agricultural grey water footprint in Beijing-Tianjin-Hebei Region under the perspective of spatial-temporal patten[J]. Journal of Hebei Agricultural University, 2021, 44(2): 128-135. ] | |
[15] | 张鑫, 李磊, 甄志磊, 等. 时空与效率视角下汾河流域农业灰水足迹分析[J]. 中国环境科学, 2019, 39(4): 1502-1510. |
[Zhang Xin, Li Lei, Zhen Zhilei, et al. Analysis of agricultural grey water footprint in Fenhe River Basin based on the perspective of space-time and efficiency[J]. China Environmental Science, 2019, 39(4): 1502-1510. ] | |
[16] | 班荣舶, 何太蓉. 重庆种植业灰水足迹核算及空间差异分析[J]. 长江科学院院报, 2015, 32(11): 7-13. |
[Ban Rongbo, He Tairong. Calculation and space difference analysis on grey water footprint for crop farming in Chongqing[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(11): 7-13. ] | |
[17] | 何立新, 练继建, 王书吉. 河北省主要农作物2005—2014年灰水足迹变化[J]. 水利水电技术, 2016, 47(12): 143-148. |
[He Lixin, Lian Jijian, Wang Shuji. Variation of grey water footprint of main crops in Hebei Province from 2005 to 2014[J]. Water Resources and Hydropower Engineering, 2016, 47(12): 143-148. ] | |
[18] | 姜旭海, 韩玲, 李帆. 陕西省主要作物灰水足迹时空变化特征研究[J]. 干旱地区农业研究, 2021, 39(5): 210-215. |
[Jiang Xuhai, Han Ling, Li Fan. Study on temporal and spatial changes of grey water footprints of main crops in Shaanxi Province[J]. Agricultural Research in the Arid Areas, 2021, 39(5): 210-215. ] | |
[19] | 轩俊伟, 郑江华, 刘志辉. 新疆主要农作物生产水足迹计算分析[J]. 干旱地区农业研究, 2014, 32(6): 195-200, 235. |
[Xuan Junwei, Zheng Jianghua, Liu Zhihui. Calculation and analysis on water footprint of main crops in Xinjiang[J]. Agricultural Research in the Arid Areas, 2014, 32(6): 195-200, 235. ] | |
[20] | 尹明财, 朱豪, 胡圆昭, 等. 甘肃省灰水足迹变化特征及驱动因素[J]. 干旱区研究, 2022, 39(6): 1810-1818. |
[Yin Mingcai, Zhu Hao, Hu Yuanzhao, et al. Analysis of various characteristics and driving factors of gray water footprint in Gansu Province[J]. Arid Zone Research, 2022, 39(6): 1810-1818. ] | |
[21] |
王圣云, 林玉娟. 中国区域农业生态效率空间演化及其驱动因素——水足迹与灰水足迹视角[J]. 地理科学, 2021, 41(2): 290-301.
doi: 10.13249/j.cnki.sgs.2021.02.012 |
[Wang Shengyun, Lin Yujuan. Spatial evolution and its drivers of regional agro-ecological efficiency in China’s from the perspective of water footprint and gray water footprint[J]. Scientia Geographica Sinica, 2021, 41(2): 290-301. ]
doi: 10.13249/j.cnki.sgs.2021.02.012 |
|
[22] | 李东林, 左其亭, 张伟, 等. 基于Nerlove方法的塔里木河流域农业水资源配置模型[J]. 水资源保护, 2021, 37(2): 75-80. |
[Li Donglin, Zuo Qiting, Zhang Wei, et al. Agricultural water resources allocation model in Tarim River Basin based on Nerlove approach[J]. Water Resources Protection, 2021, 37(2): 75-80. ] | |
[23] |
韩琴, 孙才志, 邹玮. 1998—2012年中国省际灰水足迹效率测度与驱动模式分析[J]. 资源科学, 2016, 38(6): 1179-1191.
doi: 10.18402/resci.2016.06.17 |
[Han Qin, Sun Caizhi, Zou Wei. Grey water footprint efficiency measure and its driving pattern analysis on provincial scale in China from 1998 to 2012[J]. Resources Science, 2016, 38(6): 1179-1191. ]
doi: 10.18402/resci.2016.06.17 |
|
[24] | 黄秀艳, 师庆东. 新疆于田绿洲2015年农业景观要素水足迹计算[J]. 节水灌溉, 2018, 274(6): 111-115. |
[Huang Xiuyan, Shi Qingdong. Calculation of water footprint of agricultural landscape elements in Yutian Oasis of Xinjiang in 2015[J]. Water Saving Irrigation, 2018, 274(6): 111-115. ] | |
[25] | 李啸虎, 杨德刚. 基于水足迹的节水型城郊种植业结构优化研究——以乌鲁木齐市为例[J]. 水土保持研究, 2017, 24(1): 298-304. |
[Li Xiaohu, Yang Degang. Study of the structure optimization of water saving suburban cropping in arid lands based on the water footprint: A case study in Urumqi City[J]. Research of Soil and Water Conservation, 2017, 24(1): 298-304. ] | |
[26] | 虞祎, 张晖, 胡浩. 农业生产与水资源承载力评价[J]. 中国生态农业学报, 2016, 24(7): 978-986. |
[Yu Yi, Zhang Hui, Hu Hao. Agricultural production and evaluation in terms of water resources carrying capacity[J]. Chinese Journal of Eco-Agriculture, 2016, 24(7): 978-986. ] | |
[27] |
周伟, 沈镭, 钟帅. 面向可持续发展目标的西部水土资源评估[J]. 地理研究, 2022, 41(3): 917-930.
doi: 10.11821/dlyj020201092 |
[Zhou Wei, Shen Lei, Zhong Shuai. Assessment of land and water resources in western China for the sustainable development goals[J]. Geographical Research, 2022, 41(3): 917-930. ]
doi: 10.11821/dlyj020201092 |
|
[28] | 国家环境保护总局自然生态保护司. 全国规模化畜禽养殖业污染情况调查及防治对策[M]. 北京: 中国环境科学出版社, 2002. |
[ Department of Natural Ecology Protection, State Environmental Protection Administration. Investigation on the Pollution Situation of National Large-scale Livestock and Poultry Breeding Industry and Countermeasures for Prevention and Control[M]. Beijing: China Environmental Science Press, 2002. ] | |
[29] | 黄登迎, 杨红. 新疆畜牧业发展用水研究——基于水足迹的视角[J]. 节水灌溉, 2018, 272(4): 96-98, 104. |
[Huang Dengying, Yang Hong. A study on water use of Xinjiang animal husbandry development from the perspective of water footprint[J]. Water Saving Irrigation, 2018, 272(4): 96-98, 104. ] | |
[30] | 赵俊, 刘新平, 刘向晖, 等. 塔里木河流域农牧系统耦合协调度分析[J]. 干旱区地理, 2015, 38(5): 1077-1084. |
[Zhao Jun, Liu Xinping, Liu Xianghui, et al. Analysis on coupling coordination degree between agriculture and animal husbandry systems in Tarim River Basin[J]. Arid Land Geography, 2015, 38(5): 1077-1084. ] | |
[31] | 颜璐, 马惠兰. 塔里木河流域不同作物化肥施用时空变化及贡献率分析[J]. 干旱区地理, 2014, 37(3): 587-595. |
[Yan Lu, Ma Huilan. Contribution rate and change of fertilizer input in different planting structures in Tarim River Basin[J]. Arid Land Geography, 2014, 37(3): 587-595. ] | |
[32] | 张丽丽, 邓晓雅, 龙爱华, 等. 基于农业水足迹的水资源安全时空变化分析——以新疆和田地区为例[J]. 干旱区研究, 2022, 39(2): 436-447. |
[Zhang Lili, Deng Xiaoya, Long Aihua, et al. Spatial-temporal assessment of water resource security based on the agricultural water footprint: A case in the Hotan Prefecture of Xinjiang[J]. Arid Zone Research, 2022, 39(2): 436-447. ] |
|