干旱区研究 ›› 2019, Vol. 36 ›› Issue (3): 771-780.doi: 10.13866/j.azr.2019.03.29

• 其他 • 上一篇    下一篇

基于无人机影像的荒漠地表类型信息提取

彭佳忆1,2, 王新军1,2, 朱磊1,2, 赵成义3, 徐晓龙1,2   

  1. 1.新疆农业大学草业与环境科学学院,新疆 乌鲁木齐 830052;
    2.新疆土壤与植物生态过程实验室,新疆 乌鲁木齐 830052;
    3.中国科学院新疆生态与地理研究所,新疆 乌鲁木齐 830011
  • 收稿日期:2018-07-16 修回日期:2019-01-15 发布日期:2025-10-18
  • 通讯作者: 王新军. E-mail: wxj8112@163.com
  • 作者简介:彭佳忆(1992-),男,硕士研究生,主要从事遥感与地理信息系统研究. E-mail:pjypengjiayi@163.com
  • 基金资助:
    国家自然科学基金项目(41761085,41301205)资助

Information Extraction of Desert Surface Types Based on UAV Image

PENG Jia-yi1,2, WANG Xin-jun1,2, ZHU Lei1,2, ZHAO Chen-yi3, XU Xiao-long1,2   

  1. 1. College of Grassland and Environmental Sciences,Xinjiang Agricultural University,Urumqi 830052,Xinjiang,China;
    2. Xinjiang Key Laboratory of Soil and Plant Ecological Processes,Urumqi 830052,Xinjiang,China;
    3. Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences,Urumqi 830011,Xinjiang,China
  • Received:2018-07-16 Revised:2019-01-15 Online:2025-10-18

摘要: 基于无人机可见光影像对古尔班通古特沙漠地表类型信息进行提取,运用面向对象的多尺度分割,在提取样本的光谱、形状、纹理、植被指数特征的基础上,建立规则提取地表类型信息。结果表明:① 荒漠地表类型不同,最佳分割尺度不同;② 不同荒漠化程度地表类型特征相似,无法运用单个特征进行区分,需选用多种特征组合提取地表类型;③ 面向对象的多尺度分割方法相对于基于像元的最大似然法分类有明显提高,面向对象轻度沙漠区总体分类精度为93.00%,中度沙漠化区为91.83%,重度沙漠化区为93.50%,较基于像元的最大似然方法分别提高了10.34%、11.86%和12.50%。表明针对无人机可见光影像,面向对象的多尺度分割方法能高精度地提取荒漠地表类型信息。

关键词: 无人机影像, 荒漠, 地表类型, 信息提取, 古尔班通古特沙漠

Abstract: Based on the images of unmanned aerial vehicle (UAV),in this study the surface type information of the Gurbantunggut Desert was extracted,and the object-oriented multi-scale segmentation was used to extract the information of the sample plots of surface types from the spectrum,shape,texture and vegetation index.The results showed that:① The best segmentation scale for the different desert surface types was different;② The features of surface types with different desertification levels were similar and could not be distinguished by single characteristics;③ Compared with the pixel-based maximum likelihood method,the object-oriented multi-scale segmentation method was improved significantly.The overall classification accuracies of the object-oriented slightly,moderately and seriously desertified areas were 93.00%,91.83% and 93.50% respectively,and they were 10.34%,11.86% and 12.50% higher than those of the pixel-based maximum likelihood method.The results revealed that the object-oriented multi-scale segmentation method could be used to extract the desert surface type information with high accuracy for the UAV visible image.

Key words: UAV image, desert, land surface type, information extraction, the Gurbantonggut desert