干旱区研究 ›› 2024, Vol. 41 ›› Issue (11): 1898-1907.doi: 10.13866/j.azr.2024.11.10 cstr: 32277.14.AZR.20241110
收稿日期:
2024-06-03
修回日期:
2024-11-05
出版日期:
2024-11-15
发布日期:
2024-11-29
通讯作者:
马瑞. E-mail: mr031103@126.com作者简介:
柴巧弟(1997-),女,硕士研究生,主要从事荒漠生态方向的研究. E-mail: chaiqd@st.gsau.edu.cn
基金资助:
CHAI Qiaodi(), MA Rui(), WANG Anlin, ZHANG Fu, LIU Teng, TIAN Yongsheng
Received:
2024-06-03
Revised:
2024-11-05
Published:
2024-11-15
Online:
2024-11-29
摘要:
本研究以河西走廊阻沙固沙带典型荒漠植物梭梭(Haloxylon ammodendron)和白刺(Nitraria tangutorum)为研究对象,通过野外调查、样品采集、室内分析与统计相结合的方法,探讨荒漠植物对干旱环境的适应策略。因此,选取民勤绿洲阻沙固沙带和高台绿洲阻沙固沙带,分别自上风向的自然植被封育保护带和下风向的乔灌防护林带,空间结构特征较为一致的阻沙固沙带,设置3个10 m×10 m的梭梭样方和3个10 m×10 m的白刺样方。分析其叶片主要参数与环境因子的空间分布特征及其相关性,旨在为评价两种荒漠植物叶功能性状对干旱环境的适应策略提供数据支撑。典型荒漠植物均可通过调整叶功能性状以适应特定生境下的土壤和气候条件,结果表明:(1) 叶干物质含量(LDMC)和比叶面积(SLA)差异显著(P<0.05),叶有机碳(LOC)、叶氮(LN)和叶磷含量(LP)在两种生境中均呈现出极显著差异(P<0.001)。(2) 主成分分析表明,影响民勤植物叶功能性状的前3个指标因子为LN、C:N和C:P;影响高台植物叶功能性状的前3个指标因子为LP、C:N和N:P。(3) 冗余分析表明,土壤含水量(SWC)、土壤有机碳含量(SOC)和空气干燥度(AD)是影响两种荒漠植物叶功能性状变化的主要限制环境因子。
柴巧弟, 马瑞, 王安林, 张富, 刘腾, 田永胜. 河西走廊阻沙固沙带典型荒漠植物叶功能性状[J]. 干旱区研究, 2024, 41(11): 1898-1907.
CHAI Qiaodi, MA Rui, WANG Anlin, ZHANG Fu, LIU Teng, TIAN Yongsheng. Leaf functional traits of typical desert plants in the sand-blocking and sand-fixing belt of the Hexi Corridor[J]. Arid Zone Research, 2024, 41(11): 1898-1907.
表1
样地特征"
研究区 | 地理位置 | 海拔/m | 物种 | 林龄/a | 株高/cm | 冠幅/cm | 枯梢率/% | 病虫害 | 生境描述 | |
---|---|---|---|---|---|---|---|---|---|---|
长轴 | 短轴 | |||||||||
民勤 | 38°91′N,103°91′E | 1332 | 梭梭 | 10~15 | 167.86±3.06 | 164.08±9.45 | 159.88±7.60 | 15~20 | 无 | 土壤类型为沙土,土壤含水量约为0.1%~0.2% |
白刺 | 90.65±5.57 | 135.95±6.38 | 124.42±8.06 | 无 | 无 | |||||
高台 | 39°53′N,99°53′E | 1228 | 梭梭 | 10~15 | 228.45±7.31 | 272.10±2.74 | 213.71±7.47 | 仅见于风蚀槽内 | 无 | 土壤类型为沙土,土壤含水量约为0.2%~0.7% |
白刺 | 145.82±13.23 | 480.57±10.44 | 394.82±8.60 | 无 | 无 |
表2
两种生境下植物叶功能性状的差异性"
叶功能性状 | 生境 | 物种 | 生境×物种 | |||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | |||
LT | 2.939 | 0.089 | 51.456 | 0.001*** | 46.56 | 0.001*** | ||
LWC | 9.787 | 0.002* | 345.204 | 0.001*** | 138.238 | 0.001*** | ||
LDMC | 41.070 | 0.001*** | 148.046 | 0.001*** | 1.316 | 0.254 | ||
SLA | 35.768 | 0.001*** | 140.807 | 0.001*** | 4.185 | 0.043* | ||
LOC | 55.635 | 0.001*** | 1201.515 | 0.001*** | 74.988 | 0.001*** | ||
LN | 79.531 | 0.001*** | 1.475 | 0.001*** | 57.188 | 0.001**v | ||
LP | 45.049 | 0.001*** | 5.312 | 0.001*** | 118.909 | 0.001*** | ||
C:N | 809.438 | 0.001*** | 0.280 | 0.598 | 0.042 | 0.838 | ||
N:P | 238.968 | 0.001*** | 103.876 | 0.001*** | 59.729 | 0.001*** | ||
C:P | 373.174 | 0.001*** | 163.228 | 0.001*** | 82.388 | 0.254 |
表3
叶功能性状指标之间的相关系数"
样地 | 指标因子 | LT | LWC | LDMC | SLA | LOC | LN | LP | C:N | N:P | C:P |
---|---|---|---|---|---|---|---|---|---|---|---|
民勤 | LT | 1 | |||||||||
LWC | 0.031 | 1 | |||||||||
LDMC | 0.046* | 0.732 | 1 | ||||||||
SLA | -0.093** | 0.686 | 0.427 | 1 | |||||||
LOC | 0.064 | 0.919 | 0.696 | -0.699** | 1 | ||||||
LN | -0.009 | 0.447 | 0.477 | 0.389 | 0.529 | 1 | |||||
LP | 0.017 | 0.295 | 0.213 | 0.253 | 0.317 | 0.089 | 1 | ||||
C:N | 0.003 | -0.033 | -0.150 | -0.058** | -0.100** | 0.871 | 0.030 | 1 | |||
N:P | -0.037 | 0.243 | 0.306 | 0.215* | 0.306 | 0.858 | 0.431 | 0.809 | 1 | ||
C:P | 0.013 | 0.274 | 0.215 | 0.183* | 0.306 | 0.230 | 0.804 | 0.078 | 0.615 | 1 | |
高台 | LT | 1 | |||||||||
LWC | 0.423 | 1 | |||||||||
LDMC | 0.720 | 0.427 | 1 | ||||||||
SLA | -0.517** | 0.242 | 0.499* | 1 | |||||||
LOC | 0.767 | 0.417 | 0.728 | 0.726 | 1 | ||||||
LN | 0.618 | 0.444 | 0.448** | 0.400 | 0.599 | 1 | |||||
LP | -0.729** | -0.511 | -0.706** | -0.646 | -0.815** | -0.569 | 1 | ||||
C:N | -0.149** | -0.209 | 0.014* | 0.081 | 0.034* | -0.765 | 0.051 | 1 | |||
N:P | 0.758 | 0.533 | 0.641 | 0.567 | 0.781 | 0.899 | -0.859 | -0.486 | 1 | ||
C:P | 0.780 | 0.481 | 0.755 | 0.715 | 0.934 | 0.602 | -0.958 | -0.012 | 0.868 | 1 |
表4
初始因子旋转成分矩阵与主成分贡献率"
样地 | 指标因子 | 主成分一 | 主成分二 | 主成分三 | 主成分四 | 综合得分 | 综合位次 | 公因子方差 |
---|---|---|---|---|---|---|---|---|
民勤 | LT | -1.178 | 0.254 | -1.847 | -0.311 | -0.818 | 9 | 0.974 |
LWC | -0.995 | -0.354 | -1.424 | 1.341 | -0.642 | 8 | 0.920 | |
LDMC | -0.924 | -0.124 | 0.587 | 2.027 | -0.023 | 5 | 0.656 | |
SLA | -0.885 | -0.427 | -1.228 | 1.210 | -0.593 | 7 | 0.671 | |
LOC | -1.205 | 0.223 | -0.913 | 1.203 | -0.457 | 6 | 0.921 | |
LN | -0.930 | -0.535 | 0.160 | 0.278 | 1.234 | 2 | 0.991 | |
LP | -1.059 | -0.380 | 1.373 | 0.134 | 0.028 | 4 | 0.989 | |
C:N | -0.818 | -0.361 | 0.100 | 0.583 | 0.412 | 3 | 0.983 | |
N:P | -1.153 | -0.032 | 1.193 | 0.903 | -1.007 | 10 | 0.995 | |
C:P | -1.124 | -0.178 | -0.161 | 0.225 | 1.508 | 1 | 0.991 | |
特征值 | 4.084 | 2.410 | 1.567 | 1.028 | ||||
贡献率/% | 34.266 | 26.070 | 20.263 | 10.295 | ||||
累计贡献率/% | 34.266 | 60.336 | 80.600 | 90.895 | ||||
高台 | LT | -1.092 | 0.469 | -1.748 | 0.267 | -0.626 | 8 | 0.834 |
LWC | -1.161 | -0.146 | 0.242 | -0.614 | -0.483 | 5 | 0.987 | |
LDMC | -0.299 | -0.693 | -0.120 | -0.607 | -0.392 | 4 | 0.847 | |
SLA | -1.061 | -0.114 | -0.835 | 0.069 | -0.572 | 6 | 0.904 | |
LOC | -1.002 | -0.127 | -0.794 | -0.409 | -0.624 | 7 | 0.900 | |
LN | -0.237 | -0.151 | -2.777 | -0.009 | -0.742 | 10 | 0.980 | |
LP | -0.697 | -0.502 | 1.386 | -0.919 | -0.193 | 3 | 0.870 | |
C:N | -0.956 | -0.512 | 1.668 | -0.310 | -0.146 | 2 | 0.981 | |
N:P | -0.844 | -0.723 | 1.587 | 0.350 | -0.091 | 1 | 0.971 | |
C:P | -0.380 | -1.338 | -0.287 | -0.800 | -0.650 | 9 | 0.961 | |
特征值 | 6.297 | 1.683 | 0.742 | 0.512 | ||||
贡献率/% | 34.943 | 23.751 | 21.512 | 12.134 | ||||
累计贡献率/% | 34.943 | 58.694 | 80.206 | 92.339 |
[1] | Violle C, Navas M L, Vile D, et al. Let the concept of trait be functional![J]. Oikos, 2007, 116(5): 882-892. |
[2] | Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985): 821-827. |
[3] | 李玉霖, 崔建垣, 苏永中. 不同沙丘生境主要植物比叶面积和叶干物质含量的比较[J]. 生态学报, 2005, 25(2): 304-311. |
[Li Yulin, Cui Jianyuan, Su Yongzhong. Comparison of specific leaf area and leaf dry matter content of main plants in different dune habitats[J]. Acta Ecologica Sinica, 2005, 25(2): 304-311. ] | |
[4] | 焦德志, 钟露朋, 杨建霄, 等. 扎龙湿地不同生境芦苇功能性状变异及其对土壤因子的响应[J]. 生态学报, 2023, 43(22): 9305-9313. |
[Jiao Dezhi, Zhong Lupeng, Yang Jianxiao, et al. Variation of functional traits of Phragmites australis and its response to soil factors in different habitats of Zhalong Wetland[J]. Acta Ecologica Sinica, 2023, 43(22): 9305-9313. ] | |
[5] | 孙力, 贡璐, 朱美玲, 等. 塔里木盆地北缘荒漠典型植物叶片化学计量特征及其与土壤环境因子的关系[J]. 生态学杂志, 2017, 36(5): 1208-1214. |
[Sun Li, Gong Lu, Zhu Meiling, et al. Leaf stoichiometry of typical desert plants in the northern margin of Tarim Basin and its relationship with soil environmental factors[J]. Chinese Journal of Ecology, 2017, 36(5): 1208-1214. ] | |
[6] | 李从娟, 徐新文, 孙永强, 等. 不同生境下三种荒漠植物叶片及土壤C、N、P的化学计量特征[J]. 干旱区地理, 2014, 37(5): 996-1004. |
[Li Congjuan, Xu Xinwen, Sun Yongqiang, et al. Stoichiometric characteristics of C, N and P in leaves and soil of three desert plants in different habitats[J]. Arid Land Geography, 2014, 37(5): 996-1004. ] | |
[7] | 王飞, 陈文业, 郭树江, 等. 沙拐枣叶功能性状对生境变化的响应[J]. 西北植物学报, 2024, 44(1): 77-87. |
[Wang Fei, Chen Wenye, Guo Shujiang, et al. Responses of leaf functional traits to habitat changes in Calligonum mongolicum[J]. Acta Botanica Boreali-Occidentalia Sinica, 2024, 44(1): 77-87. ] | |
[8] |
李瑞, 单立山, 解婷婷, 等. 典型荒漠灌木叶片功能性状特征随降水梯度的变化研究[J]. 干旱区研究, 2023, 40(3): 425-435.
doi: 10.13866/j.azr.2023.03.09 |
[Li Rui, Shan Lishan, Jie Tingting, et al. Study on the variation of leaf functional traits of typical desert shrubs with precipitation gradient[J]. Arid Zone Research, 2023, 40(3): 425-435. ]
doi: 10.13866/j.azr.2023.03.09 |
|
[9] | 李静, 陈斌, 田晓萍, 等. 河西走廊中段草原植物群落物种多样性与土壤含水量的关系[J/OL]. 草原与草坪, [2024-09-04], 1-11. |
[Li Jing, Chen Bin, Tian Xiaoping, et al. Relationship between species diversity and soil water content of grassland plant communities in the middle section of Hexi Corridor[J/OL]. Grassland and Turf, [2024-09-04], 1-11. ] | |
[10] | 李天江, 奚立宗, 李玲萍, 等. 基于CMPAS产品的河西走廊汛期降水日变化特征[J]. 陕西气象, 2024(4): 26-31. |
[Li Tianjiang, Xi Lizong, Li Lingping, et al. Diurnal variation characteristics of precipitation in flood season in Hexi Corridor based on CMPAS products[J]. Shanxi Meteorology, 2024(4): 26-31. ] | |
[11] |
Zhang Y, Xie J B, Li Y. Effects of increasing root carbon investment on the mortality and resprouting of Haloxylon ammodendron seedlings under drought[J]. Plant Biology, 2017, 19(2): 191-200.
doi: 10.1111/plb.12511 pmid: 27696600 |
[12] | 史培军, 严平, 高尚玉, 等. 我国沙尘暴灾害及其研究进展与展望[J]. 自然灾害学报, 2000, 9(3): 71-77. |
[Shi Peijun, Yan Ping, Gao Shangyu, et al. Sandstorm disaster in China and its research progress and prospect[J]. Journal of Natural Disasters, 2000, 9(3): 71-77. ] | |
[13] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 30-204. |
[Bao Shidan. Soil Agrochemical Analysis[M]. Beijing: China Agriculture Press, 2000: 30-204. ] | |
[14] | Cunningham S A, Summerhayes B, Westoby M. Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients[J]. Ecological Monographs, 1999, 69(4): 569-588. |
[15] |
Dodd G L, Donovan L A. Water potential and ionic effects on germination and seedling growth of two cold desert shrubs[J]. American Journal of Botany, 1999, 86(8): 1146-1153.
pmid: 10449394 |
[16] | 苏培玺, 严巧娣. 内陆黑河流域植物稳定碳同位素变化及其指示意义[J]. 生态学报, 2008, 28(4): 1616-1624. |
[Su Peixi, Yan Qiaodi. Stable carbon isotope variation of plants in inland Heihe River Basin and its indicative significance[J]. Acta Ecologica Sinica, 2008, 28(4): 1616-1624. ] | |
[17] | 刘万德, 苏建荣, 李帅锋, 等. 云南普洱季风常绿阔叶林演替系列植物和土壤C、N、P化学计量特征[J]. 生态学报, 2010, 30(23): 6581-6590. |
[Liu Wande, Su Jianrong, Li Shuaifeng, et al. Stoichiometric characteristics of C, N and P in plant and soil of monsoon evergreen broad-leaved forest succession series in Pu’er, Yunnan[J]. Acta Ecologica Sinica, 2010, 30(23): 6581-6590. ] | |
[18] | 何念鹏, 刘聪聪, 张佳慧, 等. 植物性状研究的机遇与挑战: 从器官到群落[J]. 生态学报, 2018, 38(19): 6787-6796. |
[He Nianpeng, Liu Congcong, Zhang Jiahui, et al. Opportunities and challenges in plant trait research: From organ to community[J]. Acta Ecologica Sinica, 2018, 38(19): 6787-6796. ] | |
[19] | 余华, 钟全林, 黄云波, 等. 不同种源刨花楠林下幼苗叶功能性状与地理环境的关系[J]. 应用生态学报, 2018, 29(2): 449-458. |
[Yu Hua, Zhong Quanlin, Huang Yunbo, et al. The relationship between leaf functional traits and geographical environment of seedlings under different provenances of Machilus pauhoi[J]. Chinese Journal of Applied Ecology, 2018, 29(2): 449-458. ] | |
[20] | Ohashi Y, Nakayama N, Saneoka H, et al. Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants[J]. Biologia Plantarum, 2006, 50: 138-141. |
[21] | Qin H, Jiao L, Zhou Y, et al. Elevation affects the ecological stoichiometry of Qinghai spruce in the Qilian Mountains of Northwest China[J]. Frontiers in Plant Science, 2022, 13: 917755. |
[22] | Klausmeier C A, Litchman E, Daufresne T, et al. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton[J]. Nature, 2004, 429(6988): 171-174. |
[23] | Wang L, Zhao G, Li M, et al. C: N: P stoichiometry and leaf traits of halophytes in an arid saline environment, Northwest China[J]. PLoS One, 2015, 10(3): e0119935. |
[24] |
聂明鹤, 沈艳, 陆颖, 等. 宁夏盐池县荒漠草原区不同群落优势植物叶片-土壤生态化学计量特征[J]. 草地学报, 2021, 29(1): 131-140.
doi: 10.11733/j.issn.1007-0435.2021.01.016 |
[Nie Minghe, Shen Yan, Lu Ying, et al. Leaf-soil ecological stoichiometric characteristics of dominant plants in different communities of desert steppe in Yanchi County, Ningxia[J]. Acta Agrestia Sinica, 2021, 29(1): 131-140. ]
doi: 10.11733/j.issn.1007-0435.2021.01.016 |
|
[25] | Koerselman W, Meuleman A F M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996: 1441-1450. |
[26] | 王鹏, 戴亚, 吕祥敏, 等. 用流动分析仪测定烟田土壤中的全氮、全磷[J]. 烟草科技, 2004(12): 28-29, 35. |
[Wang Peng, Dai Ya, Lv Xiangmin, et al. Determination of total nitrogen and total phosphorus in tobacco field soil by flow analyzer[J]. Tobacco Science & Technology, 2004(12): 28-29, 35. ] | |
[27] | 张旋, 李蕊希, 郑洲, 等. 极端干旱区多枝柽柳叶片功能性状及其与土壤理化因子的关系[J]. 生态学报, 2023, 43(9): 3699-3708. |
[Zhang Xuan, Li Ruixi, Zheng Zhou, et al. Leaf functional traits of Tamarix ramosissima and their relationship with soil physical and chemical factors in extreme arid area[J]. Acta Ecologica Sinica, 2023, 43(9): 3699-3708. ] | |
[28] | Zhang B, Tang G, Yin H, et al. Groundwater depths affect phosphorus and potassium resorption but not their utilization in a desert phreatophyte in its hyper-arid environment[J]. Frontiers in Plant Science, 2021, 12: 665168. |
[29] | 李中恺, 李小雁, 周沙, 等. 土壤-植被-水文耦合过程与机制研究进展[J]. 中国科学: 地球科学, 2022, 52(11): 2105-2138. |
[Li Zhongkai, Li Xiaoyan, Zhou Sha, et al. Research progress on soil-vegetation-hydrology coupling process and mechanism[J]. Scientia Sinica (Terrae), 2022, 52(11): 2105-2138. ] | |
[30] | Zhou H, Chen Y, Li W, et al. Photosynthesis of Populus euphratica and its response to elevated CO2 concentration in an arid environment[J]. Progress in Natural Science, 2009, 19(4): 443-451. |
[31] | 刘深思, 徐贵青, 米晓军, 等. 地下水埋深和季节性干旱对古尔班通古特沙漠南缘梭梭生理和生长的影响[J]. 生态学报, 2022, 42(21): 8881-8891. |
[Liu Shensi, Xu Guiqing, Mi Xiaojun, et al. Effects of groundwater depth and seasonal drought on the physiology and growth of Haloxylon ammodendron in the southern margin of the Gurbantunggut Desert[J]. Acta Ecologica Sinica, 2022, 42(21): 8881-8891. ] | |
[32] | 王鑫, 杨磊, 赵倩, 等. 半干旱黄土小流域草地群落功能性状空间异质性及环境驱动[J]. 草业科学, 2019, 36(9): 2201-2211. |
[Wang Xin, Yang Lei, Zhao Qian, et al. Spatial heterogeneity and environmental driving of grassland community functional traits in semi-arid loess small watershed[J]. Grassland Science, 2019, 36(9): 2201-2211. ] | |
[33] | 罗艳, 贡璐, 朱美玲, 等. 塔里木河上游荒漠区4种灌木植物叶片与土壤生态化学计量特征[J]. 生态学报, 2017, 37(24): 8326-8335. |
[Luo Yan, Gong Lu, Zhu Meiling, et al. Ecological stoichiometric characteristics of leaves and soil of four shrub species in the desert area of the upper reaches of the Tarim River[J]. Acta Ecologica Sinica, 2017, 37(24): 8326-8335. ] | |
[34] | 张晓龙, 郑元润. 荒漠河岸垂直沿河梯度上胡杨叶片碳氮磷化学计量变化特征及其环境解释[J]. 应用与环境生物学报, 2023, 29(5): 1093-1099. |
[Zhang Xiaolong, Zheng Yuanrun. The stoichiometric characteristics of carbon, nitrogen and phosphorus in leaves of Populus euphratica on the vertical gradient of desert riparian and its environmental interpretation[J]. Chinese Journal of Applied and Environmental Biology, 2023, 29(5): 1093-1099. ] |
[1] | 张文睿, 孙栋元, 王亦可, 杨俊, 兰立军, 靳虎甲, 徐裕. 河西走廊水资源-生态环境-社会经济系统耦合关系及时空分异[J]. 干旱区研究, 2024, 41(9): 1527-1537. |
[2] | 陈松清, 东红芳, 岳怡锋, 郝媛媛, 刘新, 曹先宇, 马骏. 不同气候情景下中国沙棘的地理分布及动态变化预测[J]. 干旱区研究, 2024, 41(9): 1560-1571. |
[3] | 杨晓玲, 周华, 陈静, 赵慧华, 吴雯. 河西走廊东部不同气候态气温变化及其对气候评价的影响[J]. 干旱区研究, 2024, 41(7): 1089-1098. |
[4] | 赵立超, 张成福, 贺帅, 苗林, 冯霜, 潘思涵. 复杂山区地表温度模拟及影响——以内蒙古大青山为例[J]. 干旱区研究, 2024, 41(5): 765-775. |
[5] | 安宁, 郭彬, 张东梅, 杨淇越, 罗维成. 河西走廊中段荒漠植被组成及土壤养分空间分布特征[J]. 干旱区研究, 2024, 41(3): 432-443. |
[6] | 李健男, 史海滨, 苗庆丰, 珊丹, 荣浩, 温雅琴. 环境因子对不同种类人工乔木林分蒸腾耗水的影响[J]. 干旱区研究, 2023, 40(8): 1312-1321. |
[7] | 李娟, 刘阳, 刘光琇, 程亮, 郭青云, 张威, 章高森. 鄯善库木塔格沙漠北缘细菌群落结构特征及影响因素[J]. 干旱区研究, 2023, 40(8): 1358-1368. |
[8] | 李瑞, 单立山, 解婷婷, 马丽, 杨洁, 李全刚. 典型荒漠灌木叶片功能性状特征随降水梯度的变化研究[J]. 干旱区研究, 2023, 40(3): 425-435. |
[9] | 马俊梅, 马剑平, 满多清, 郭春秀, 张裕年, 赵鹏, 王飞, 李元星. 河西走廊天然胡杨林的分布和更新特征及其与土壤因子的关系[J]. 干旱区研究, 2023, 40(2): 224-234. |
[10] | 王冠正, 常顺利, 王建萍, 张毓涛, 孙雪娇, 李翔. 不同坡向雪岭云杉天然更新影响因素分析[J]. 干旱区研究, 2023, 40(10): 1661-1669. |
[11] | 闫景明,周晓兵,张静,陶冶. 新疆野苹果枝条化学计量海拔变异特征研究[J]. 干旱区研究, 2021, 38(2): 450-459. |
[12] | 焦亮, 关雪, 刘雪蕊, 董小刚, 李方. 内陆河湿地芦苇叶功能性状特征及其对土壤环境因子的响应[J]. 干旱区研究, 2020, 37(1): 202-211. |
[13] | 李玲萍, 李岩瑛, 孙占峰, 王荣喆. 河西走廊东部沙尘暴特征及地面气象因素影响机制[J]. 干旱区研究, 2019, 36(6): 1457-1465. |
[14] | 缑倩倩, 李乔乔, 屈建军, 王国华. 荒漠-绿洲过渡带土壤温度变化分析[J]. 干旱区研究, 2019, 36(4): 809-815. |
[15] | 任广琦, 贾小旭, 贾玉华, 郭成久. 黄土高原南北样带土壤有机碳空间变异及其影响因素[J]. 干旱区研究, 2018, 35(3): 524-531. |
|