| [1] |
Amadou I, Faucon M P, Houben D. Role of soil minerals on organic phosphorus availability and phosphorus uptake by plants[J]. Geoderma, 2022, 428: 116125.
|
| [2] |
李承义, 何明珠, 唐亮. 荒漠生态系统磷循环及其驱动机制研究进展[J]. 生态学报, 2022, 42(12): 5115-5124.
|
|
[Li Chengyi, He Mingzhu, Tang Liang. Advances on phosphorus cycle and their driving mechanisms in desert ecosystems: A review[J]. Acta Ecologica Sinica, 2022, 42(12): 5115-5124.]
|
| [3] |
Hedley M J, Stewart J W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal, 1982, 46(5): 970-976.
|
| [4] |
Helfenstein J, Pistocchi C, Oberson A, et al. Estimates of mean residence times of phosphorus in commonly considered inorganic soil phosphorus pools[J]. Biogeosciences, 2020, 17(2): 441-454.
doi: 10.5194/bg-17-441-2020
|
| [5] |
Johnson A H, Frizano J, Vann D R. Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure[J]. Oecologia, 2003, 135(4): 487-499.
doi: 10.1007/s00442-002-1164-5
pmid: 12695899
|
| [6] |
Fan Y, Lin F, Yang L, et al. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem[J]. Biology and Fertility of Soils, 2018, 54(1): 149-161.
|
| [7] |
Zhang H, Shi L, Fu S. Effects of nitrogen deposition and increased precipitation on soil phosphorus dynamics in a temperate forest[J]. Geoderma, 2020, 380: 114650.
|
| [8] |
陶冶, 刘耀斌, 吴甘霖, 等. 准噶尔荒漠区域尺度浅层土壤化学计量特征及其空间分布格局[J]. 草业学报, 2016, 25(7): 13-23.
doi: 10.11686/cyxb2016009
|
|
[Tao Ye, Liu Yaobin, Wu Ganlin, et al. Regional-scale ecological stoichiometric characteristics and spatial distribution patterns of key elements in surface soils in the Junggar Desert, China[J]. Acta Prataculturae Sinica, 2016, 25(7): 13-23.]
doi: 10.11686/cyxb2016009
|
| [9] |
Gao Y, Tariq A, Zeng F, et al. Allocation of foliar-P fractions of Alhagi sparsifolia and its relationship with soil-P fractions and soil properties in a hyperarid desert ecosystem[J]. Geoderma, 2022, 407: 115546.
|
| [10] |
O’Connell C S, Ruan L, Silver W L. Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions[J]. Nature Communications, 2018, 9: 1348.
doi: 10.1038/s41467-018-03352-3
pmid: 29632326
|
| [11] |
Hou E, Chen C, Luo Y, et al. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems[J]. Global Change Biology, 2018, 24(8): 3344-3356.
doi: 10.1111/gcb.14093
pmid: 29450947
|
| [12] |
Dixon J L, Chadwick O A, Vitousek P M. Climate-driven thresholds for chemical weathering in postglacial soils of New Zealand[J]. Journal of Geophysical Research-Earth Surface, 2016, 121(9): 1619-1634.
|
| [13] |
Brucker E, Spohn M. Formation of soil phosphorus fractions along a climate and vegetation gradient in the Coastal Cordillera of Chile[J]. Catena, 2019, 180: 203-211.
|
| [14] |
Zavisic A, Polle A. Dynamics of phosphorus nutrition, allocation and growth of young beech (Fagus sylvatica L.) trees in P-rich and P-poor forest soil[J]. Tree Physiology, 2018, 38(1): 37-51.
|
| [15] |
Li J, Xie T, Zhu H, et al. Alkaline phosphatase activity mediates soil organic phosphorus mineralization in a subalpine forest ecosystem[J]. Geoderma, 2021, 404: 115376.
|
| [16] |
董鹏, 任悦, 高广磊, 等. 呼伦贝尔沙地樟子松枯落物和土壤碳、氮、磷化学计量特征[J]. 干旱区研究, 2024, 41(8): 1354-1363.
doi: 10.13866/j.azr.2024.08.09
|
|
[Dong Peng, Ren Yue, Gao Guanglei, et al. Stoichiometry of carbon, nitrogen, and phosphorus in the litter and soil of Pinus sylvestris var. mongolica in the Hulunbuir Sandy Land[J]. Arid Zone Research, 2024, 41(8): 1354-1363.]
|
| [17] |
Rodriguez-Caballero E, Belnap J, Buedel B, et al. Dryland photoautotrophic soil surface communities endangered by global change[J]. Nature Geoscience, 2018, 11(3): 185-189.
|
| [18] |
Weber B, Belnap J, Budel B, et al. What is a biocrust? A refined, contemporary definition for a broadening research community[J]. Biological Reviews, 2022, 97(5): 1768-1785.
|
| [19] |
雷菲亚, 李小双, 陶冶, 等. 西北干旱区藓类结皮覆盖下土壤多功能性特征及影响因子[J]. 干旱区研究, 2024, 41(5): 812-820.
doi: 10.13866/j.azr.2024.05.09
|
|
[Lei Feiya, Li Xiaoshuang, Tao Ye, et al. Characterization of soil multifunctionality and its determining factors under moss crust cover in the arid regions of Northwest China[J]. Arid Zone Research, 2024, 41(5): 812-820.]
doi: 10.13866/j.azr.2024.05.09
|
| [20] |
张婷婷, 程向敏, 魏鑫丽, 等. 荒漠地衣结皮研究进展[J]. 菌物学报, 2021, 40(1): 1-13.
doi: 10.13346/j.mycosystema.200156
|
|
[Zhang Tingting, Cheng Xiangmin, Wei Xinli, et al. Research progress on desert lichen crust[J]. Mycosystema, 2021, 40(1): 1-13.]
doi: 10.13346/j.mycosystema.200156
|
| [21] |
张元明, 杨维康, 王雪芹, 等. 生物结皮影响下的土壤有机质分异特征[J]. 生态学报, 2005, 25(12): 3420-3425.
|
|
[Zhang Yuanming, Yang Weikang, Wang Xueqin, et al. Influence of cryptogamic soil crusts on accumulation of soil organic matter in Gurbantunggut Desert, northern Xinjiang, China[J]. Acta Ecologica Sinica, 2005, 25(12): 3420-3425.]
|
| [22] |
Tao Y, Zhou X B, Zhang S H, et al. Soil nutrient stoichiometry on linear sand dunes from a temperate desert in Central Asia[J]. Catena, 2020, 195: 104847.
|
| [23] |
Zhang S, Yang A, Zang Y, et al. Slope position affects nonstructural carbohydrate allocation strategies in different types of biological soil crusts in the Gurbantunggut Desert[J]. Plant and Soil, 2024. http://doi.org/10.1007/s11104-024-06951-w.
|
| [24] |
Zhang J, Zhang Y. Ecophysiological responses of the biocrust moss Syntrichia caninervis to experimental snow cover manipulations in a temperate desert of Central Asia[J]. Ecological Research, 2020, 35(1): 198-207.
doi: 10.1111/1440-1703.12072
|
| [25] |
Yin B, Zhang Q, Li Y, et al. Moss mortality significantly altered topsoil multifunctionality and microbial networks in a temperate desert[J]. Land Degradation & Development, 2024, 35(6): 2034-2045.
|
| [26] |
Castle S C, Morrison C D, Barger N N. Extraction of chlorophyll a from biological soil crusts: A comparison of solvents for spectrophotometric determination[J]. Soil Biology and Biochemistry, 2011, 43(4): 853-856.
|
| [27] |
Tiessen H, Moir J. Characterization of available P by sequential extraction[J]. Soil Sampling and Methods of Analysis, 1993, 7: 75-86.
|
| [28] |
Song X, Fang C, Yuan Z Q, et al. Long-term alfalfa (Medicago sativa L.) establishment could alleviate phosphorus limitation induced by nitrogen deposition in the carbonate soil[J]. Journal of Environmental Management, 2022, 324: 116346.
|
| [29] |
Zang Y X, Min X J, de Dios V R, et al. Extreme drought affects the productivity, but not the composition, of a desert plant community in Central Asia differentially across microtopographies[J]. Science of The Total Environment, 2020, 717: 137251.
|
| [30] |
Mata-González R, Pieper R D, Cárdenas M M. Vegetation patterns as affected by aspect and elevation in small desert mountains[J]. Southwestern Naturalist, 2002, 47(3): 440-448.
|
| [31] |
Lange O L, Meyer A, Zellner H, et al. Vegetation patterns as affected by aspect and elevation in small desert mountains[J]. Functional Ecology, 1994, 8(2): 253-264.
|
| [32] |
Jacobs A F G, Heusinkveld B G, Berkowicz S M. Dew measurements along a longitudinal sand dune transect, Negev Desert, Israel[J]. International Journal of Biometeorology, 2000, 43(4): 184-190.
pmid: 10789921
|
| [33] |
Baumann K, Siebers M, Kruse J, et al. Biological soil crusts as key player in biogeochemical P cycling during pedogenesis of sandy substrate[J]. Geoderma, 2019, 338: 145-158.
doi: 10.1016/j.geoderma.2018.11.034
|
| [34] |
Zhang J, Liu Y, Hou F. Changes in vegetation and soil coupling induced by biocrusts: New thinking on the segmented control of soil and water loss in the Loess Plateau, China[J]. Ecological Indicators, 2024, 161: 111953.
|
| [35] |
罗朝逸, 吴艳宏. 高山生态系统生物土壤结皮对磷循环影响研究进展[J]. 土壤通报, 2024, 55(3): 867-875.
|
|
[Luo Chaoyi, Wu Yanhong. Progress of research on the effect of biological soil crust on phosphorus cycling in alpine ecosystems[J]. Chinese Journal of Soil Science, 2024, 55(3): 867-875.]
|
| [36] |
刘春增, 张成兰, 张琳, 等. 长期紫云英配施减量化肥对土壤铵态氮吸附解吸特征的影响[J]. 中国土壤与肥料, 2024(6): 11-17.
|
|
[Liu Chunzeng, Zhang Chenglan, Zhang Lin, et al. Effects of long-term Chinese milk vetch application coupled with reduced chemical fertilizer usage on soil ammonium nitrogen adsorption and desorption characteristics[J]. Soil and Fertilizer Sciences in China, 2024(6): 11-17.]
|
| [37] |
Tian D, Niu S. A global analysis of soil acidification caused by nitrogen addition[J]. Environmental Research Letters, 2015, 10(2): 024019.
|
| [38] |
Ragot S A, Huguenin-Elie O, Kertesz M A, et al. Total and active microbial communities and phoD as affected by phosphate depletion and pH in soil[J]. Plant and Soil, 2016, 408(1): 15-30.
|
| [39] |
冯欢欢, 高思齐, 高晋丽, 等. 氮添加对大兴安岭泥炭地典型植物叶片叶绿素和养分含量的影响[J/OL]. 生态学杂志, 1-10[2025-04-22]. http://kns.cnki.net/kcms/detail/21.1148.Q.20240612.1213.004.html.
|
|
[Feng Huanhuan, Gao Siqi, Gao Jinli, et al. Effect of nitrogen addition on typical plant leaf chlorophyll and nutrient content in peatland of the Great Hing’ an Mountains[J/OL]. Chinese Journal of Ecology, 1-10[2025-04-22]. http://kns.cnki.net/kcms/detail/21.1148.Q.20240612.1213.004.html.]
|
| [40] |
Gebrelibanos T, Assen M. Effects of slope aspect and vegetation types on selected soil properties in a dryland Hirmi watershed and adjacent agro-ecosystem, northern highlands of Ethiopia[J]. African Journal of Ecology, 2014, 52(3): 292-299.
|
| [41] |
Xue R, Yang Q, Miao F, et al. Slope aspect influences plant biomass, soil properties and microbial composition in alpine meadow on the Qinghai-Tibetan Plateau[J]. Journal of Soil Science and Plant Nutrition, 2018, 18(1): 1-12.
|
| [42] |
韩志立, 尹本丰, 杨孜悦, 等. 积雪变化对温带荒漠齿肋赤藓结皮土壤磷组分的影响[J]. 生态学报, 2024, 44(16): 7119-7129.
|
|
[Han Zhili, Yin Benfeng, Yang Ziyue, et al. Effects of snow cover change on soil phosphorus fractions of Syntrichia caninervis crust in temperate desert[J]. Acta Ecologica Sinica, 2024, 44(16): 7119-7129.]
|
| [43] |
韩炳宏, 牛得草, 贺磊, 等. 生物土壤结皮发育及其影响因素研究进展[J]. 草业科学, 2017, 34(9): 1793-1801.
|
|
[Han Binghong, Niu Decao, He Lei, et al. A review on the development and effect of biological soil crusts[J]. Pratacultural Science, 2017, 34(9): 1793-1801.]
|
| [44] |
Wang C, Kuzyakov Y. Soil organic matter priming: The pH effects[J]. Global Change Biology, 2024, 30(6): e17349.
|
| [45] |
Zhang H, Shi L, Lu H, et al. Drought promotes soil phosphorus transformation and reduces phosphorus bioavailability in a temperate forest[J]. Science of the Total Environment, 2020, 732: 139295.
|
| [46] |
Jing X, Yang X, Ren F, et al. Neutral effect of nitrogen addition and negative effect of phosphorus addition on topsoil extracellular enzymatic activities in an alpine grassland ecosystem[J]. Applied Soil Ecology, 2016, 107: 205-213.
|