干旱区研究 ›› 2025, Vol. 42 ›› Issue (7): 1222-1235.doi: 10.13866/j.azr.2025.07.06 cstr: 32277.14.AZR.20250706
刘亮1,2,3(
), 董江伟4,5, 周金龙1,2,3(
), 李江4
收稿日期:2024-07-10
修回日期:2024-11-07
出版日期:2025-07-15
发布日期:2025-07-07
通讯作者:
周金龙. E-mail: zjzhoujl@163.com作者简介:刘亮(2000-),男,硕士研究生,主要研究方向为水文地球化学及地下水保护. E-mail: 1343912341@qq.com
基金资助:
LIU Liang1,2,3(
), DONG Jiangwei4,5, ZHOU Jinlong1,2,3(
), LI Jiang4
Received:2024-07-10
Revised:2024-11-07
Published:2025-07-15
Online:2025-07-07
摘要: 新疆且末县绿洲区存在高硼地表水和地下水,严重影响居民身体健康。为初步探明且末县绿洲区水化学特征及硼的主要来源,2023年共采集了24组水样(4组地表水、20组地下水),运用Piper三线图、Gibbs图,相关性分析、氢氧同位素、APCS-MLR(绝对主成分-多元线性回归)模型等方法对且末县绿洲区地表水与地下水的水化学特征及其硼的来源进行初步分析,定量评估了不同因子对水中硼和其他水化学组分的贡献。结果表明:(1) 且末县绿洲区地表水与地下水整体呈弱碱性,pH均值为8.22,地下水主要为微咸水,阴阳离子主要为SO42-、Na+。(2) 水化学类型较多,地表水和地下水均以SO4·Cl-Na·Mg型为主。(3) 研究区内地表水中硼的均值为2.34 mg·L-1,超标率为100%;地下水中硼的均值为1.73 mg·L-1,超标率为70%。(4) APCS-MLR受体模型分析揭示了水化学组分及硼的来源主要有溶滤-富集因子(F1:58.21%)、原生地质因子(F2:15.42%)、人类活动因子(F3:11.18%)和未知源。区内水中硼超标现象明显,地质环境对水中硼的富集具有较大影响。
刘亮, 董江伟, 周金龙, 李江. 且末县绿洲区地表水与地下水中硼的分布特征及其影响因素[J]. 干旱区研究, 2025, 42(7): 1222-1235.
LIU Liang, DONG Jiangwei, ZHOU Jinlong, LI Jiang. Distribution characteristics and influencing factors of distribution of boron in surface water and groundwater in the oasis area of Qiemo County and factors influencing it[J]. Arid Zone Research, 2025, 42(7): 1222-1235.
表1
研究区水化学参数统计值"
| 指标 | 地下水(n=20) | 地表水(n=4) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 最大值 | 最小值 | 均值 | 标准差 | 变异系数 | 最大值 | 最小值 | 均值 | 标准差 | 变异系数 | ||
| B | 6.42 | 0.25 | 1.73 | 1.29 | 0.75 | 3.23 | 1.91 | 2.34 | 0.53 | 0.23 | |
| Na++K+ | 1713.64 | 135.10 | 349.24 | 362.13 | 1.04 | 385.58 | 154.39 | 228.45 | 93.26 | 0.41 | |
| Ca2+ | 300.90 | 43.70 | 81.44 | 52.59 | 0.65 | 68.20 | 53.40 | 62.40 | 6.10 | 0.10 | |
| Mg2+ | 194.70 | 16.50 | 63.92 | 48.36 | 0.76 | 77.90 | 36.00 | 49.03 | 17.09 | 0.35 | |
| Cl- | 2394.00 | 146.00 | 457.35 | 489.67 | 1.07 | 515.00 | 184.00 | 287.50 | 134.79 | 0.47 | |
| 1466.00 | 84.00 | 358.35 | 327.40 | 0.91 | 385.00 | 163.00 | 239.75 | 90.08 | 0.38 | ||
| 719.00 | 149.00 | 245.65 | 138.35 | 0.56 | 325.00 | 210.00 | 249.25 | 44.77 | 0.20 | ||
| F- | 1.37 | 0.59 | 1.14 | 0.34 | 0.30 | 1.08 | 0.62 | 0.78 | 0.18 | 0.23 | |
| TDS | 6154.00 | 641.00 | 1433.20 | 1255.43 | 0.88 | 1596.00 | 701.00 | 995.25 | 360.09 | 0.36 | |
| TH | 1553.00 | 209.00 | 466.55 | 300.71 | 0.64 | 491.00 | 285.00 | 358.00 | 81.39 | 0.23 | |
| pH | 8.33 | 7.62 | 8.06 | 0.18 | 0.02 | 8.44 | 8.30 | 8.38 | 0.06 | 0.01 | |
表2
地下水和地表水中δD和δ18O的统计值"
| 水样类别 | 统计值 | δD/‰ | δ18O/‰ | d/‰ |
|---|---|---|---|---|
| 高硼地下水(n=14) | 最大值 | -55.682 | -8.134 | 16.623 |
| 最小值 | -70.487 | -10.167 | 6.616 | |
| 平均值 | -63.316 | -9.277 | 10.899 | |
| 低硼地下水(n=6) | 最大值 | -56.157 | -8.486 | 16.724 |
| 最小值 | -74.159 | -11.105 | 11.730 | |
| 平均值 | -68.624 | -10.286 | 13.664 | |
| 高硼地表水(n=4) | 最大值 | -54.189 | -7.016 | 9.997 |
| 最小值 | -61.060 | -8.803 | 1.936 | |
| 平均值 | -58.925 | -8.258 | 7.136 |
表3
公因子特征值及成分矩阵"
| 解释的总方差 | 化学指标 | 旋转成分矩阵 | |||||
|---|---|---|---|---|---|---|---|
| 公因子 | 初始特征值 | 公因子 | |||||
| 合计 | 方差贡献率/% | 累计贡献率/% | 1 | 2 | 3 | ||
| 1 | 7.657 | 58.210 | 58.210 | B | 0.056 | 0.924 | -0.144 |
| 2 | 2.005 | 15.424 | 73.634 | Na+ | 0.982 | 0.025 | -0.117 |
| 3 | 1.453 | 11.177 | 84.812 | K+ | 0.880 | 0.204 | -0.26 |
| 4 | 0.932 | 7.165 | 91.977 | Ca2+ | 0.874 | -0.199 | 0.178 |
| 5 | 0.557 | 4.284 | 96.262 | Mg2+ | 0.896 | 0.352 | -0.037 |
| 6 | 0.243 | 1.866 | 98.128 | Cl- | 0.988 | -0.036 | -0.075 |
| 7 | 0.150 | 1.152 | 99.279 | 0.972 | -0.01 | -0.119 | |
| 8 | 0.062 | 0.474 | 99.753 | 0.002 | 0.933 | 0.069 | |
| 9 | 0.025 | 0.189 | 99.942 | 0.025 | -0.064 | 0.874 | |
| 10 | 0.007 | 0.052 | 99.994 | F- | 0.254 | 0.031 | -0.570 |
| 11 | 0.001 | 0.006 | 100.000 | TDS | 0.991 | 0.050 | -0.086 |
| 12 | 0.000 | 0.000 | 100.000 | TH | 0.974 | 0.147 | 0.053 |
| 13 | 0.000 | 0.000 | 100.000 | Eh | 0.470 | 0.377 | 0.464 |
| [1] | Hilal N, Kim G J, Somerfield C. Boron removal from saline water: A comprehensive review[J]. Desalination, 2011, 273(1-3): 23-35. |
| [2] | 曹恭, 梁鸣早. 硼-平衡栽培体系中植物必需的微量元素[J]. 土壤肥料, 2003(5): 54-56, 53. |
| [Cao Gong, Liang Mingzao. Plant essential trace elements in boron-balanced cultivation systems[J]. Soil and Fertilizer Sciences in China, 2003(5): 54-56, 53.] | |
| [3] | Howe P D. A review of boron effects in the environment[J]. Biological Trace Element Research, 1998, 66(1- 3): 153-166. |
| [4] | Kabay N, Güler E, Bryjak M. Boron in seawater and methods for its separation-A review[J]. Desalination, 2010, 261(1-3): 212-217. |
| [5] | Nielsen F H, Stoecker B J, Penland J G. Boron as a dietary factor for bone microarchitecture and central nervous system function[C]// The 3rd International Symposium on all Aspects of Plant and Animal Boron Nutrition, 2007: 277-290. |
| [6] | Hunt C D. Dietary boron: An overview of the evidence for its role in immune function[J]. Journal of Trace Elements in Experimental Medicine, 2003, 16(4): 291-306. |
| [7] | Zhang Y, Tan H, Cong P, et al. Boron and lithium isotopic constraints on their origin, evolution, and enrichment processes in a river-groundwater-salt lake system in the Qaidam Basin, northeastern Tibetan Plateau[J]. Ore Geology Reviews, 2022, 149: 13. |
| [8] | 刘明亮. 西藏典型高温水热系统中硼的地球化学研究[D]. 武汉: 中国地质大学, 2018. |
| [Liu Mingliang. Boron Geochemistry of the Geothermal Waters from Typical Hydrothermal Systems in Tibet[D]. Wuhan: China University of Geosciences, 2018.] | |
| [9] | 李少文, 周传芳, 杨华本, 等. 新疆且末县青塔山岩体地球化学特征及其地质意义[J]. 中国地质调查, 2024, 11(3): 59-67. |
| [Li Shaowen, Zhou Chuanfang, Yang Huaben, et al. Geochemical characteristics and geological significance of Qingtashan rock mass in Qiemo County of Xinjiang[J]. Geological Survey of China, 2024, 11(3): 59-67.] | |
| [10] | 王旭东. 新疆车尔臣河中下游地表水与地下水转化机理研究[D]. 乌鲁木齐: 新疆大学, 2021. |
| [Wang Xudong. Study on the Conversion Mechanism of Surface Water and Groundwater in the Middle and Lower Reaches of Cherchen River in Xinjiang[D]. Urumqi: Xinjiang University, 2021.] | |
| [11] |
胡启瑞, 王雪姣, 吉春容, 等. 且末县气候变化特征及其对棉花发育期和产量的影响[J]. 中国农学通报, 2023, 39(29): 79-85.
doi: 10.11924/j.issn.1000-6850.casb2022-0916 |
|
[Hu Qirui, Wang Xuejiao, Ji Chunrong, et al. Characteristics of climate change and its effects on cotton growth period and yield in Qiemo[J]. Chinese Agricultural Science Bulletin, 2023, 39(29): 79-85.]
doi: 10.11924/j.issn.1000-6850.casb2022-0916 |
|
| [12] | 王旭东, 李升, 郭新, 等. 基于同位素技术的且末车尔臣河流域地下水补给来源分析[J]. 中国农村水利水电, 2020(2): 23-28, 33. |
| [Wang Xudong, Li Sheng, Guo Xin, et al. An analysis of the groundwater recharge source of Cherchen River Basin in Qianma County[J]. China Rural Water and Hydropower, 2020(2): 23-28, 33.] | |
| [13] | 李玲. 和田河流域绿洲区地下水水化学特征及形成机制研究[D]. 乌鲁木齐: 新疆农业大学, 2022. |
| [Li Ling. Hydrochemical Characteristics and Formation Mechanism of Groundwater in Oasis Area of Hotan River Basin[D]. Urumqi: Xinjiang Agricultural University, 2022.] | |
| [14] | 许卫民. 新疆且末县车尔臣河流域地下水水文地质条件分析[J]. 地下水, 2017, 39(3): 230-231. |
| [Xu Weimin. Analysis of hydrogeological conditions of groundwater in Cheerchen River Basin, Qiemo County, Xinjiang[J]. Ground Water, 2017, 39(3): 230-231.] | |
| [15] | 阿布都热合曼·哈力克. 新疆车尔臣河流域地下水的可持续开发利用研究[J]. 干旱区资源与环境, 2012, 26(3): 68-75. |
| [Abdirahman Halik. Sustainable development of groundwater of Cheerchen River Basin in Xinjiang[J]. Journal of Arid Land Resources and Environment, 2012, 26(3): 68-75.] | |
| [16] |
孙英, 周金龙, 杨方源, 等. 塔里木盆地南缘绿洲带地下水砷氟碘分布及共富集成因[J]. 地学前缘, 2022, 29(3): 99-114.
doi: 10.13745/j.esf.sf.2022.1.33 |
|
[Sun Ying, Zhou Jinlong, Yang Fangyuan, et al. Distribution and co-enrichment genesis of arsenic, fluorine and iodine in groundwater of the oasis belt in the southern margin of Tarim Basin[J]. Earth Science Frontiers, 2022, 29(3): 99-114.]
doi: 10.13745/j.esf.sf.2022.1.33 |
|
| [17] | 刘天超, 于宁, 李通, 等. 新疆车尔臣河地下水水化学特征分析[J]. 地下水, 2021, 43(3): 56-57, 118. |
| [Liu Tianchao, Yu Ning, Li Tong, et al. Analysis of groundwater hydrochemical characteristics of Cherchen River in Xinjiang[J]. Ground Water, 2021, 43(3): 56-57, 118.] | |
| [18] | 高福翔, 姜凤, 周金龙, 等. 新疆车尔臣河流域地表水与地下水化学特征及其硼来源的初步分析[J]. 环境科学, 2024, 45(12): 7146-7156. |
| [Gao Fuxiang, Jiang Feng, Zhou Jinlong, et al. Preliminary analysis of chemical characteristics and boron sources of surface water and groundwater in the Cherechen River Basin of Xinjiang[J]. Environmental Science, 2024, 45(12): 7146-7156.] | |
| [19] | 李军, 邹胜章, 赵一, 等. 会仙岩溶湿地地下水主要离子特征及成因分析[J]. 环境科学, 2021, 42(4): 1750-1760. |
| [Li Jun, Zou Shengzhang, Zhao Yi, et al. Major ionic characteristics and factors of Karst groundwater at Huixian Karst Wetland, China[J]. Environmental Science, 2021, 42(4): 1750-1760.] | |
| [20] | 李军, 欧阳宏涛, 周金龙. 新疆车尔臣河流域绿洲带地下水咸化与污染主控因素[J]. 环境科学, 2024, 45(1): 207-217. |
| [Li Jun, Ouyang Hongtao, Zhou Jinlong. Controlling factors of groundwater salinization and pollution in the oasis zone of the Cherchen River Basin of Xinjiang[J]. Environmental Science, 2024, 45(1): 207-217.] | |
| [21] |
丁启振, 雷米, 周金龙, 等. 博尔塔拉河上游河谷地区水化学特征及水质评价[J]. 干旱区研究, 2022, 39(3): 829-840.
doi: 10.13866/j.azr.2022.03.16 |
|
[Ding Qizhen, Lei Mi, Zhou Jinlong, et al. An assessment of groundwater, surface water, and hydrochemical characteristics in the upper valley of the Bortala River[J]. Arid Zone Research, 2022, 39(3): 829-840.]
doi: 10.13866/j.azr.2022.03.16 |
|
| [22] | 何锦, 张怀胜, 蔡五田, 等. 衡水市桃城区浅层地下水咸化成因[J]. 环境科学, 2023, 44(8): 4314-4324. |
| [He Jin, Zhang Huaisheng, Cai Wutian, et al. Mechanism of salinization groundwater in Taocheng District, Hengshui City[J]. Environmental Science, 2023, 44(8): 4314-4324.] | |
| [23] | 宋献方, 李发东, 于静洁, 等. 基于氢氧同位素与水化学的潮白河流域地下水水循环特征[J]. 地理研究, 2007, 26(1): 11-21. |
| [Song Xianfang, Li Fadong, Yu Jingjie, et al. Characteristics of groundwater cycle using deuterium, oxygen-18 and hydrochemistry in Chaobai River Basin[J]. Geographical Research, 2007, 26(1): 11-21.] | |
| [24] | 王文祥, 王瑞久, 李文鹏, 等. 塔里木盆地地表水氢氧同位素与水化学特征分析[J]. 水文地质工程地质, 2013, 40(4): 29-35. |
| [Wang Wenxiang, Wang Ruijiu, Li Wenpeng, et al. Analysis of stable isotopes and hydrochemistry of rivers in Tarim Basin[J]. Hydrogeology & Engineering Geology, 2013, 40(4): 29-35.] | |
| [25] | 孟令华. 基于水化学和氢氧同位素的泰安城区岩溶地下水补给来源及演化过程[J]. 环境科学, 2024, 45(4): 2096-2106. |
| [Meng Linghua. Recharge source and evolution process of karst groundwater in Tai’ an urban area based on hydrochemistry and hydrogen and oxygen isotopes[J]. Environmental Science, 2024, 45(4): 2096-2106.] | |
| [26] | 胡爽, 武刚, 吴彬, 等. 阜康市平原区近20年地下水化学演变及成因[J]. 环境科学学报, 2023, 43(5): 79-88. |
| [Hu Shuang, Wu Gang, Wu Bin, et al. Evolution and causes of groundwater chemistry in the plain area of Fukang City in the past 20 years[J]. Acta Scientiae Circumstantiae, 2023, 43(5): 79-88.] | |
| [27] | 张雅, 胡元平, 陶良, 等. 武汉长江新城地下水化学特征及成因分析[J]. 环境科学学报, 2021, 41(3): 1022-1030. |
| [Zhang Ya, Hu Yuanping, Tao Liang, et al. Hydrochemical characteristic and formation mechanism in the Yangtze River Demonstration District,Wuhan City[J]. Acta Scientiae Circumstantiae, 2021, 41(3): 1022-1030.] | |
| [28] | 艳艳, 高瑞忠, 刘廷玺, 等. 西北盐湖流域地下水水化学特征及控制因素[J]. 环境科学, 2023, 44(12): 6767-6777. |
| [Yan Yan, Gao Ruizhong, Liu Tingxi, et al. Hydrochemical characteristics and control factors of groundwater in the Northwest Salt Lake Basin[J]. Environmental Science, 2023, 44(12): 6767-6777.] | |
| [29] | 栾风娇, 周金龙, 贾瑞亮, 等. 新疆巴里坤-伊吾盆地地下水水化学特征及成因[J]. 环境化学, 2017, 36(2): 380-389. |
| [Luan Fengjiao, Zhou Jinlong, Jia Ruiliang, et al. Hydrochemical characteristics and formation mechanism of groundwater in plain areas of Barkol-Yiwu Basin, Xinjiang[J]. Environmental Chemistry, 2017, 36(2): 380-389.] | |
| [30] | 洪涛, 谢运球, 喻崎雯, 等. 乌蒙山重点地区地下水水化学特征及成因分析[J]. 地球与环境, 2016, 44(1): 11-18. |
| [Hong Tao, Xie Yunqiu, Yu Qiwen, et al. Hydrochemical characteristics study and genetic analysis of groundwater in a key region of the Wumeng Mountain, Southwestern China[J]. Earth and Environment, 2016, 44(1): 11-18.] | |
| [31] | 张艳, 吴勇, 杨军, 等. 阆中市思依镇水化学特征及其成因分析[J]. 环境科学, 2015, 36(9): 3230-3237. |
| [Zhang Yan, Wu Yong, Yang Jun, et al. Hydrochemical characteristic and reasoning analysis in Siyi Town,Langzhong City[J]. Environmental Science, 2015, 36(9): 3230-3237.] | |
| [32] | 王慧玮, 郭小娇, 张千千, 等. 滹沱河流域地下水水化学特征演化及成因分析[J]. 环境化学, 2021, 40(12): 3838-3845. |
| [Wang Huiwei, Guo Xiaojiao, Zhang Qianqian, et al. Evolution of groundwater hydrochemical characteristics and origin analysis in Hutuo River Basin[J]. Environmental Chemistry, 2021, 40(12): 3838-3845.] | |
| [33] | Gao Y, Chen J, Qian H, et al. Hydrogeochemical characteristics and processes of groundwater in an over 2260 year irrigation district: A comparison between irrigated and nonirrigated areas[J]. Journal of Hydrology, 2022, 606: 127-437. |
| [34] | 陶兰初, 寸得欣, 涂春霖, 等. 珠江源块泽河流域地表水水化学特征及控制因素[J]. 环境科学, 2023, 44(11): 6025-6037. |
| [Tao Lanchu, Cun Dexin, Tu Chunlin, et al. Hydrochemical characteristics and control factors of surface water in Kuaize River Basin at the upper pearl River[J]. Environmental Science, 2023, 44(11): 6025-6037.] | |
| [35] |
康文辉, 周殷竹, 孙英, 等. 新疆玛纳斯河流域地下水砷氟分布及共富集成因[J]. 干旱区研究, 2023, 40(9): 1425-1437.
doi: 10.13866/j.azr.2023.09.06 |
|
[Kang Wenhui, Zhou Yinzhu, Sun Ying, et al. Distribution and coenrichment of arsenic and fluorine in the groundwater of the Manas River Basin in Xinjiang[J]. Arid Zone Research, 2023, 40(9): 1425-1437.]
doi: 10.13866/j.azr.2023.09.06 |
|
| [36] | 卢胜城, 韩凤清, 马云麒, 等. 柴达木盆地盐湖卤水及其沉积物硼同位素地球化学研究进展[J]. 盐湖研究, 2020, 28(4): 112-124. |
| [Lu Shengcheng, Han Fengqing, Ma Yunqi, et al. Review of boron isotopic geochemistry of brines and their sediments in salt lakes, Qaidam Basin[J]. Journal of Salt Lake Research, 2020, 28(4): 112-124.] | |
| [37] | 吕苑苑. 青藏高原盐湖硼、锂同位素变化规律及其对当雄错盐湖资源评价应用[J]. 地质力学学报, 2024, 30(1): 107-128. |
| [Lyu Yuanyuan. Variation patterns of boron and lithium isotopes in salt lakes on the Qinghai-Xizang Plateau and their application in evaluating resources in the Damxung Co salt lake[J]. Journal of Geomechanics, 2024, 30(1): 107-128.] | |
| [38] |
毛若愚, 郭华明, 贾永锋, 等. 内蒙古河套盆地含氟地下水分布特点及成因[J]. 地学前缘, 2016, 23(2): 260-268.
doi: 10.13745/j.esf.2016.02.024 |
| [Mao Ruoyu, Guo Huaming, Jia Yongfeng, et al. Distribution characteristics and genesis of fluoride groundwater in the Hetao Basin, Inner Mongolia[J]. Earth Science Frontiers, 2016, 23(2): 260-268.] | |
| [39] |
吕晓立, 刘景涛, 周冰, 等. 塔城盆地地下水氟分布特征及富集机理[J]. 地学前缘, 2021, 28(2): 426-436.
doi: 10.13745/j.esf.sf.2020.10.29 |
|
[Lv Xiaoli, Liu Jingtao, Zhou Bing, et al. Distribution characteristics and enrichment mechanism of fluoride in the shallow aquifer of the Tacheng Basin[J]. Earth Science Frontiers, 2021, 28(2): 426-436.]
doi: 10.13745/j.esf.sf.2020.10.29 |
|
| [40] | He X D, Li P Y, Wu J H, et al. Poor groundwater quality and high potential health risks in the Datong Basin, Northern China: Research from published data[J]. Environmental Geochemistry and Health, 2021, 43(2): 791-812. |
| [41] |
李小等, 常亮, 段瑞, 等. 和田河流域水化学特征与地下水补给来源分析[J]. 干旱区研究, 2024, 41(6): 917-927.
doi: 10.13866/j.azr.2024.06.02 |
|
[Li Xiaodeng, Chang Liang, Duan Rui, et al. Analysis of the hydrochemistry characteristics and groundwater recharge sources in the Hotan River Basin, China[J]. Arid Zone Research, 2024, 41(6): 917-927.]
doi: 10.13866/j.azr.2024.06.02 |
|
| [42] | Zhang Q Q, Wang H E. Assessment of sources and transformation of nitrate in the alluvial-pluvial fan region of North China using amulti-isotope approach[J]. Journal of Environmental Sciences, 2020, 89: 9-22. |
| [43] | 赵江涛, 周金龙, 李巧, 等. 新疆焉耆盆地平原区地下水有机污染特征初步分析[J]. 环境化学, 2015, 34(8): 1506-1513. |
| [Zhao Jiangtao, Zhou Jinlong, Li Qiao, et al. Preliminary analysis on the organic contamination of groundwater in the plain area of Yanqi Basin, Xinjiang[J]. Environmental Chemistry, 2015, 34(8): 1506-1513.] | |
| [44] | Shafiullah G, Al-Ruwaih F M. Spatial-multivariate statistical analyses to assess water quality for irrigation of the central part of Kuwait[J]. Bulletin of Engineering Geology and the Environment, 2019, 79: 27-37. |
| [45] |
Tian H, Du J, Sun Q, et al. Evaluation of shallow groundwater for drinking purpose based on water quality index and synthetic pollution index in Changchun New District, China[J]. Environmental Forensics, 2021, 22(1-2): 189-204.
doi: 10.1080/15275922.2020.1834024 |
| [46] | 王松, 吴彤, 彭琼. 基于主成分分析法对乐山市2022度水环境评价研究[J]. 四川环境, 2024, 43(1): 64-67. |
| [Wang Song, Wu Tong, Peng Qiong. Study on assessment of water environment in Leshan in 2022 based on principal component analysis[J]. Sichuan Environment, 2024, 43(1): 64-67.] | |
| [47] | 姜凤, 周金龙, 周殷竹, 等. 巴伊盆地平原区地下水水化学特征及污染源识别[J]. 环境科学, 2023, 44(11): 6050-6061. |
| [Jiang Feng, Zhou Jinlong, Zhou Yinzhu, et al. Hydrochemical characteristics and pollution source identification of groundwater in plain area of Barkol-Yiwu Basin[J]. Environmental Science, 2023, 44(11): 6050-6061.] | |
| [48] | 侯珺. 石河子地区地下水水质演化与微量无机组分形成机理研究[D]. 乌鲁木齐: 新疆农业大学, 2018. |
| [Hou Jun. Research of Evolution of Groundwater Quality and Occurrence Mechanism of Trace Inorganic Components in Shihezi Area[D]. Urumqi: Xinjiang Agricultural University, 2018.] |
| [1] | 孟庆帅, 巩钰, 刘小燕, 童新, 王东民, 谢国英, 刘廷玺. 水资源-社会经济-生态环境耦合协调度关系研究及预测——以黄河流域内蒙古段为例[J]. 干旱区研究, 2025, 42(4): 682-694. |
| [2] | 王微, 杨淑婷, 海云瑞. 宁夏土地利用碳排放时空演变及影响因素[J]. 干旱区研究, 2025, 42(3): 545-555. |
| [3] | 张擂, 周煜明, 董杰谋, 李祥, 刘时栋, 徐丽萍. 中国耕地非农化与非粮化时空分异及其治理策略[J]. 干旱区研究, 2025, 42(2): 372-383. |
| [4] | 王婷, 沈赣华, 刘兵, 孙莹琳, 汪再光. 天山北坡经济带水库群时空变化特征及驱动机制[J]. 干旱区研究, 2024, 41(9): 1456-1467. |
| [5] | 张群慧, 常亮, 顾小凡, 王倩, 马卯楠, 李小等, 段瑞, 犹香智. 1979—2020年柴达木盆地人体舒适度指数时空变化及趋势分析[J]. 干旱区研究, 2024, 41(8): 1300-1308. |
| [6] | 张宏伟, 别强, 石莹, 苏晓杰, 李欣璋. 黄河流域上游植被覆盖变化特征及其影响因素[J]. 干旱区研究, 2024, 41(8): 1385-1394. |
| [7] | 胡广录, 刘鹏, 李嘉楠, 陶虎, 周成乾. 黑河中游绿洲边缘三种景观类型土壤水分动态特征及影响因素[J]. 干旱区研究, 2024, 41(4): 550-565. |
| [8] | 聂汉林, 樊良新, 郭琎, 张梦可, 王志君. 县域尺度下关中地区农作物水足迹时空特征及影响因素[J]. 干旱区研究, 2024, 41(2): 339-352. |
| [9] | 陈爱军,张寅,楚志刚. 基于FY-4A QPE的中亚五国降水时空分布特征[J]. 干旱区研究, 2023, 40(9): 1369-1381. |
| [10] | 刘军彦,王世杰. 基于ICESat-2卫星测高数据的呼伦湖水位变化监测[J]. 干旱区研究, 2023, 40(9): 1438-1445. |
| [11] | 马继龙, 史军辉, 王新英, 阿丽亚·拜都热拉, 刘茂秀, 艾吉尔·阿不拉. 洪水漫溢对塔里木河中游河岸胡杨林土壤有机碳及活性组分的影响[J]. 干旱区研究, 2023, 40(8): 1248-1257. |
| [12] | 海龙, 周梅, 张嘉開, 洪光宇, 李凤滋, 费菲. 毛乌素沙地不同林龄杨柴灌木林土壤呼吸及其影响因素[J]. 干旱区研究, 2023, 40(7): 1107-1116. |
| [13] | 齐润泽, 潘竟虎. 河湟地区生态脆弱性时空演变及影响因素研究[J]. 干旱区研究, 2023, 40(6): 1002-1013. |
| [14] | 赵克明, 孙鸣婧, 李霞, 施俊杰, 安大维, 许婷婷. 两种典型大气扩散指数在新疆的分布特征及其适用性对比[J]. 干旱区研究, 2023, 40(5): 691-702. |
| [15] | 马晓蕾,乔雅琦,王婕,焦士兴,张曼. 陕西省水生态足迹深度与广度时空格局及影响因素[J]. 干旱区研究, 2023, 40(3): 469-480. |
|
||