[1] |
Holling C S. Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics, 1973, 4(1): 1-23.
doi: 10.1146/ecolsys.1973.4.issue-1
|
[2] |
Holling C S. Engineering resilience versus ecological resilience[J]. Engineering within Ecological Constraints, 1996, 31(1996): 32.
|
[3] |
Scheffer M. Critical Transitions in Nature and Society[M]. Princeton, USA: Princeton University Press, 2009.
|
[4] |
Charney J G. Dynamics of deserts and drought in Sahel[J]. Quarterly Journal of the Royal Meteorological Society, 1975, 101(428): 193-202.
doi: 10.1002/(ISSN)1477-870X
|
[5] |
Scheffer M, Carpenter S, Foley J A, et al. Catastrophic shifts in ecosystems[J]. Nature, 2001, 413(6856): 591-596.
doi: 10.1038/35098000
|
[6] |
Xu Y, Yang J, Chen Y. NDVI-based vegetation responses to climate change in an arid area of China[J]. Theoretical and Applied Climatology, 2016, 126(1): 213-222.
doi: 10.1007/s00704-015-1572-1
|
[7] |
王新军, 赵成义, 杨瑞红, 等. 基于像元二分法的沙地植被景观格局特征变化分析[J]. 农业工程学报, 2016, 32(3): 285-294.
|
|
[Wang Xinjun, Zhao Chengyi, Yang Ruihong, et al. Dynamic characteristics of sandy vegetation landscape pattern based on dimidiate pixel model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 285-294. ]
|
[8] |
Verbesselt J, Hyndman R, Newnham G, et al. Detecting trend and seasonal changes in satellite image time series[J]. Remote Sensing of Environment, 2010, 114(1): 106-115.
doi: 10.1016/j.rse.2009.08.014
|
[9] |
Verbesselt J, Hyndman R, Zeileis A, et al. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series[J]. Remote Sensing of Environment, 2010, 114(12): 2970-2980.
doi: 10.1016/j.rse.2010.08.003
|
[10] |
Verbesselt J, Zeileis A, Herold M. Near real-time disturbance detection using satellite image time series[J]. Remote Sensing of Environment, 2012, 123: 98-108.
doi: 10.1016/j.rse.2012.02.022
|
[11] |
Von Keyserlingk J, De Hoop M, Mayor A G, et al. Resilience of vegetation to drought: Studying the effect of grazing in a Mediterranean rangeland using satellite time series[J]. Remote Sensing of Environment, 2021, 255: 112270.
doi: 10.1016/j.rse.2020.112270
|
[12] |
Verbesselt J, Umlauf N, Hirota M, et al. Remotely sensed resilience of tropical forests[J]. Nature Climate Change, 2016, 6(11): 1028-1031.
doi: 10.1038/NCLIMATE3108
|
[13] |
Dakos V, Carpenter S R, Brock W A, et al. Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data[J]. Plos One, 2012, 7(7): e41010.
doi: 10.1371/journal.pone.0041010
|
[14] |
Scheffer M, Carpenter S R, Lenton T M, et al. Anticipating critical transitions[J]. Science, 2012, 338(6105): 344-348.
doi: 10.1126/science.1225244
pmid: 23087241
|
[15] |
Hishe H, Oosterlynck L, Giday K, et al. A combination of climate, tree diversity and local human disturbance determine the stability of dry Afromontane forests[J]. Forest Ecosystems, 2021, 8(1): 1-16.
doi: 10.1186/s40663-020-00279-4
|
[16] |
De Keersmaecker W, Lhermitte S, Tits L, et al. A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover[J]. Global Ecology and Biogeography, 2015, 24(5): 539-548.
doi: 10.1111/geb.2015.24.issue-5
|
[17] |
Arani B M S, Carpenter S R, Lahti L, et al. Exit time as a measure of ecological resilience[J]. Science, 2021, 372(6547): eaay4895.
doi: 10.1126/science.aay4895
|
[18] |
Dakos V, Kefi S. Ecological resilience: What to measure and how[J]. Environmental Research Letters, 2022, 17(4): 043003.
doi: 10.1088/1748-9326/ac5767
|
[19] |
Nolting B C, Abbott K C. Balls, cups, and quasi-potentials: Quantifying stability in stochastic systems[J]. Ecology, 2016, 97(4): 850-864.
pmid: 27220202
|
[20] |
Meng Y Y, Liu X N, Ding C, et al. Analysis of ecological resilience to evaluate the inherent maintenance capacity of a forest ecosystem using a dense Landsat time series[J]. Ecological Informatics, 2020, 57: 101064.
doi: 10.1016/j.ecoinf.2020.101064
|
[21] |
曾勇. 古尔班通古特沙漠植物多样性对降水变化的敏感性研究[D]. 石河子: 石河子大学, 2015.
|
|
[Zeng Yong. Study of Sensitivity of Plant Diversity to Precipitation Change in the Gurbantünggüt Desert[D]. Shihezi: Shihezi University, 2015. ]
|
[22] |
李培基. 中国西部积雪变化特征[J]. 地理学报, 1993, 60(6): 505-515.
|
|
[Li Peiji. Dynamic characteristic of snow cover in western China[J]. Acta Geographica Sinica, 1993, 60(6): 505-515. ]
|
[23] |
张立运, 陈昌笃. 论古尔班通古特沙漠植物多样性的一般特点[J]. 生态学报, 2002, 22(11): 1923-1932.
|
|
[Zhang Liyun, Chen Changdu. On the general characteristics of plant diversity of Gurbantunggut sandy desert[J]. Acta Ecologica Sinica, 2002, 22(11): 1923-1932. ]
|
[24] |
王雪芹, 蒋进, 雷加强, 等. 古尔班通古特沙漠短命植物分布及其沙面稳定意义[J]. 地理学报, 2003, 70(4): 598-605.
|
|
[Wang Xueqin, Jiang Jin, Lei Jiaqiang, et al. The distribution of ephemeral vegetation on the longitudinal dune surface and its stabilization significance in the Gurbantunggut Desert[J]. Acta Geographica Sinica, 2003, 70(4): 598-605. ]
|
[25] |
陈曦, 姜逢清, 胡汝骥, 等. 中国干旱区自然地理[M]. 北京: 科学出版社, 2015.
|
|
[Chen Xi, Jiang Fengqing, Hu Ruji, et al. A brief Introduction to Physical Geography of Arid Land in China[M]. Beijing: Science Press, 2015. ]
|
[26] |
罗宁, 刘尊驰, 于航, 等. 古尔班通古特沙漠南部植物多样性的区域差异[J]. 生态学报, 2016, 36(12): 3572-3581.
|
|
[Luo Ning, Liu Zunchi, Yu Hang, et al. Regional differences in plant diversity in the southern Gurbantonggut desert[J]. Acta Ecologica Sinica, 2016, 36(12): 3572-3581. ]
|
[27] |
Holben B N. Characteristics of maximum-value composite images from temporal AVHRR data[J]. International Journal of Remote Sensing, 1986, 7(11): 1417-1434.
doi: 10.1080/01431168608948945
|
[28] |
杨怡, 吴世新, 庄庆威, 等. 2000—2018年古尔班通古特沙漠EVI时空变化特征[J]. 干旱区研究, 2019, 36(6): 1512-1520.
|
|
[Yang Yi, Wu Shixin, Zhuang Qingwei, et al. Spatiotemporal change of EVI in the Gurbantunggut Desert from 2000 to 2018[J]. Arid Zone Research, 2019, 36(6): 1512-1520. ]
|
[29] |
岳天祥. 地球表层系统模拟分析原理与方法[M]. 北京: 科学出版社, 2017.
|
|
[Yue Tianxiang. Principles and Methods for Simulating Earth’s Surface Systems[M]. Beijing: Science Press, 2017. ]
|
[30] |
Auger-Methe M, Newman K, Cole D, et al. A guide to state-space modeling of ecological time series[J]. Ecological Monographs, 2021, 91(4): e01470.
|
[31] |
Holmes E E, Ward E J, Wills K. MARSS: Multivariate autoregressive state-space models for analyzing time-series data[J]. The R Journal, 2012, 4(1): 11-19.
doi: 10.32614/RJ-2012-002
|
[32] |
Myers J L, Well A D, Lorch R F. Research design and statistical analysis[M]. New York, USA: Routledge, 2013.
|
[33] |
Bai J, Shi H, Yu Q, et al. Satellite-observed vegetation stability in response to changes in climate and total water storage in Central Asia[J]. Science of The Total Environment, 2019, 659: 862-871.
doi: 10.1016/j.scitotenv.2018.12.418
|
[34] |
高洁, 赵勇, 姚俊强, 等. 气候变化背景下中亚干旱区大气水分循环要素时空演变[J]. 干旱区研究, 2022, 39(5): 1371-1384.
|
|
[Gao Jie, Zhao Yong, Yao Junqiang, et al. Spatiotemporal evolution of atmospheric water cycle factors in arid regions of Central Asia under climate change[J]. Arid Zone Research, 2022, 39(5): 1371-1384. ]
|
[35] |
Fu A, Wang W, Li W, et al. Resistance and resilience of desert riparian communities to extreme droughts[J]. Forests, 2022, 13(7): 1032.
doi: 10.3390/f13071032
|
[36] |
于丹丹, 唐立松, 李彦, 等. 古尔班通古特沙漠白梭梭群落林下层物种多样性的空间分异[J]. 干旱区研究, 2010, 27(4): 559-566.
|
|
[Yu Dandan, Tang Lisong, Li Yan, et al. Spatial variation of the diversity characteristics of understory plant species of Haloxylon persicum in the Gurbantunggut Desert[J]. Arid Zone Research, 2010, 27(4): 559-566. ]
|
[37] |
张荣, 刘彤. 古尔班通古特沙漠南部植物多样性及群落分类[J]. 生态学报, 2012, 32(19): 6056-6066.
doi: 10.5846/stxb
|
|
[Zhang Rong, Liu Tong. Plant species diversity and community classification in the southern Gurbantunggut Desert[J]. Acta Ecologica Sinica, 2012, 32(19): 6056-6066. ]
doi: 10.5846/stxb
|
[38] |
李功麟, 张定海, 张志山, 等. 古尔班通古特沙漠沙丘主要灌木的种群数量动态[J]. 中国沙漠, 2021, 41(2): 129-137.
doi: 10.7522/j.issn.1000-694X.2020.00103
|
|
[Li Gonglin, Zhang Dinghai, Zhang Zhishan, et al. Population dynamics of main sand-fixing shrubs in the Gurbantunggut Desert[J]. Journal of Desert Research, 2021, 41(2): 129-137. ]
doi: 10.7522/j.issn.1000-694X.2020.00103
|
[39] |
蒋超亮, 吴玲, 安静, 等. 古尔班通古特沙漠旱生植物时空分布特征[J]. 生态学报, 2019, 39(3): 936-944.
|
|
[Jiang Chaoliang, Wu Ling, An Jing, et al. Spatio-temporal distribution of xerophytes in the Gurbantunggut Desert[J]. Acta Ecologica Sinica, 2019, 39(3): 936-944. ]
|
[40] |
丁俊祥, 范连连, 李彦, 等. 古尔班通古特沙漠6种荒漠草本植物的生物量分配与相关生长关系[J]. 中国沙漠, 2016, 36(5): 1323-1330.
doi: 10.7522/j.issn.1000-694X.2015.00107
|
|
[Ding Junxiang, Fan Lianlian, Li Yan, et al. Biomass allocation and allometric relationships of six desert herbaceous plants in the Gurbantunggut Desert[J]. Journal of Desert Research, 2016, 36(5): 1323-1330. ]
doi: 10.7522/j.issn.1000-694X.2015.00107
|
[41] |
李志忠, 靳建辉, 刘瑞, 等. 古尔班通古特沙漠风沙地貌研究进展评述[J]. 中国沙漠, 2022, 42(1): 41-47.
doi: 10.7522/j.issn.1000-694X.2021.00186
|
|
[Li Zhizhong, Jin Jianhui, Liu Rui, et al. Review and prospect of aeolian geomorphology research in Gurbantunggut Desert, China[J]. Journal of Desert Research, 2022, 42(1): 41-47. ]
doi: 10.7522/j.issn.1000-694X.2021.00186
|