[1] |
Pekel J F, Cottam A, Gorelick N, et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016, 540(7633): 418-422.
|
[2] |
Hall J W, Grey D, Garrick D, et al. Coping with the curse of freshwater variability[J]. Science, 2014, 346(6208): 429-430.
doi: 10.1126/science.1257890
pmid: 25342791
|
[3] |
Vörösmarty C J, McIntyre P B, Gessner M O, et al. Global threats to human water security and river biodiversity[J]. Nature, 2010, 467(7315): 555-561.
|
[4] |
姚俊强. 新疆空中水资源和地表水资源变化特征研究[J]. 干旱区研究, 2024, 41(2): 181-190.
doi: 10.13866/j.azr.2024.02.01
|
|
[Yao Junqiang. Change in atmospheric and surface water resource in Xinjiang[J]. Arid Zone Research, 2024, 41(2): 181-190. ]
doi: 10.13866/j.azr.2024.02.01
|
[5] |
Yao J, Chen Y, Guan X, et al. Recent climate and hydrological changes in a mountain-basin system in Xinjiang, China[J]. Earth-Science Reviews, 2022, 226: 103957.
|
[6] |
Shen Y J, Shen Y, Guo Y, et al. Review of historical and projected future climatic and hydrological changes in mountainous semiarid Xinjiang (northwestern China), Central Asia[J]. CATENA, 2020, 187: 104343.
|
[7] |
Lu H, Zhao R, Zhao L, et al. A contrarian growth: The spatiotemporal dynamics of open-surface water bodies on the northern slope of Kunlun Mountains[J]. Ecological Indicators, 2023, 157: 111249.
|
[8] |
Zheng L, Xia Z, Xu J, et al. Exploring annual lake dynamics in Xinjiang (China): Spatiotemporal features and driving climate factors from 2000 to 2019[J]. Climatic Change, 2021, 166(3): 36.
|
[9] |
邹珊, 吉力力·阿不都外力, 黄文静, 等. 塔里木河下游生态输水对地表水体面积变化的影响[J]. 干旱区地理, 2021, 44(3): 681-690.
doi: 10.12118/j.issn.1000–6060.2021.03.10
|
|
[Zou Shan, Jilili Abuduwaili, Huang Wenjing, et al. Effects of ecological water conveyance on changes of surface water area in the lower reaches of Tarim River[J]. Arid Land Geography, 2021, 44(3): 681-690. ]
doi: 10.12118/j.issn.1000–6060.2021.03.10
|
[10] |
Alsdorf D E, Rodríguez E, Lettenmaier D P. Measuring surface water from space[J]. Reviews of Geophysics, 2007, 45(2): 1-24.
|
[11] |
Liu X, Hu G, Chen Y, et al. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform[J]. Remote Sensing of Environment, 2018, 209: 227-239.
|
[12] |
Wang X, Xiao X, Zou Z, et al. Gainers and losers of surface and terrestrial water resources in China during 1989-2016[J]. Nature Communications, 2020, 11(1): 3471.
|
[13] |
Huang C, Chen Y, Zhang S, et al. Detecting, extracting, and monitoring surface water from space using optical sensors: A review[J]. Reviews of Geophysics, 2018, 56(2): 333-360.
|
[14] |
McFeeters S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7): 1425-1432.
|
[15] |
Xu H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006, 27(14): 3025-3033.
|
[16] |
Sun F, Sun W, Chen J, et al. Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery[J]. International Journal of Remote Sensing, 2012, 33(21): 6854-6875.
|
[17] |
Gómez C, White J C, Wulder M A. Optical remotely sensed time series data for land cover classification: A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 116: 55-72.
|
[18] |
Khatami R, Mountrakis G, Stehman S V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research[J]. Remote Sensing of Environment, 2016, 177: 89-100.
|
[19] |
Chen Y, Li Z, Fan Y, et al. Progress and prospects of climate change impacts on hydrology in the arid region of Northwest China[J]. Environmental Research, 2015, 139: 11-19.
doi: 10.1016/j.envres.2014.12.029
pmid: 25682220
|
[20] |
Abatzoglou J T, Dobrowski S Z, Parks S A, et al. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015[J]. Scientific Data, 2018, 5(1): 170191.
|
[21] |
Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8): 3907-3925.
doi: 10.5194/essd-13-3907-2021
|
[22] |
Tapley B D, Bettadpur S, Ries J C, et al. GRACE measurements of mass variability in the earth system[J]. Science, 2004, 305(5683): 503-505.
doi: 10.1126/science.1099192
pmid: 15273390
|
[23] |
Zou Z, Xiao X, Dong J, et al. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016[J]. Proceedings of the National Academy of Sciences, 2018, 115(15): 3810-3815.
|
[24] |
Huang W, Duan W, Nover D, et al. An integrated assessment of surface water dynamics in the Irtysh River Basin during 1990-2019 and exploratory factor analyses[J]. Journal of Hydrology, 2021, 593: 125905.
|
[25] |
Huang W, Duan W, Chen Y. Unravelling lake water storage change in Central Asia: Rapid decrease in tail-end lakes and increasing risks to water supply[J]. Journal of Hydrology, 2022, 614: 128546.
|
[26] |
Zhou H, Liu S, Hu S, et al. Retrieving dynamics of the surface water extent in the upper reach of Yellow River[J]. Science of The Total Environment, 2021, 800: 149348.
|
[27] |
Zou Z, Dong J, Menarguez M A, et al. Continued decrease of open surface water body area in Oklahoma during 1984-2015[J]. Science of The Total Environment, 2017, 595: 451-460.
|
[28] |
Chen J, Kang T, Yang S, et al. Open-Surface water bodies dynamics analysis in the Tarim River Basin (North-Western China), based on Google Earth Engine cloud platform[J]. Water, 2020, 12(10): 2822.
|
[29] |
李崇巍, 王志慧, 汤秋鸿, 等. 1986—2019年黄河流域地表水体动态变化及其影响因素[J]. 地理学报, 2022, 77(5): 1153-1168.
doi: 10.11821/dlxb202205008
|
|
[Li Chongwei, Wang Zhihui, Tang Qiuhong, et al. Dynamics of surface water area in the Yellow River Basin and its influencing mechanism during 1986-2019 based on Google Earth Engine[J]. Acta Geographica Sinica, 2022, 77(5): 1153-1168. ]
doi: 10.11821/dlxb202205008
|
[30] |
Olofsson P, Foody G M, Herold M, et al. Good practices for estimating area and assessing accuracy of land change[J]. Remote Sensing of Environment, 2014, 148: 42-57.
|
[31] |
Sen P K. Estimates of the regression coefficient based on Kendall’s Tau[J]. Journal of the American Statistical Association, 1968, 63(324): 1379-1389.
|
[32] |
Hamed K H, Ramachandra Rao A. A modified Mann-Kendall trend test for autocorrelated data[J]. Journal of Hydrology, 1998, 204(1): 182-196.
|
[33] |
Mann H B. Nonparametric Tests Against Trend[J]. Econometrica, 1945, 13(3): 245-259.
|
[34] |
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010
|
|
[Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134. ]
doi: 10.11821/dlxb201701010
|
[35] |
李稚, 朱成刚, 汪家友, 等. 东昆仑库木库里盆地典型湖泊水量蒸发损失估算[J]. 干旱区地理, 2024, 47(8): 1263-1276.
doi: 10.12118/j.issn.1000-6060.2024.166
|
|
[Li Zhi, Zhu Chenggang, Wang Jiayou, et al. Estimation of evaporation loss from typical lakes in the Kumukuli Basin, East Kunlun Mountains[J]. Arid Land Geography, 2024, 47(8): 1263-1276. ]
doi: 10.12118/j.issn.1000-6060.2024.166
|
[36] |
Tao S, Zhang H, Feng Y, et al. Changes in China’s water resources in the early 21st century[J]. Frontiers in Ecology and the Environment, 2020, 18(4): 188-193.
|
[37] |
Yao F, Livneh B, Rajagopalan B, et al. Satellites reveal widespread decline in global lake water storage[J]. Science, 2023, 380(6646): 743-749.
doi: 10.1126/science.abo2812
pmid: 37200445
|
[38] |
Yao J, Chen Y, Zhao Y, et al. Climatic and associated atmospheric water cycle changes over the Xinjiang, China[J]. Journal of Hydrology, 2020, 585: 124823.
|
[39] |
Chen Y, Li B, Fan Y, et al. Hydrological and water cycle processes of inland river basins in the arid region of Northwest China[J]. Journal of Arid Land, 2019, 11(2): 161-179.
doi: 10.1007/s40333-019-0050-5
|
[40] |
吝静, 赵成义, 马晓飞, 等. 基于生态系统服务价值的塔里木河干流土地利用结构优化[J]. 干旱区研究, 2021, 38(4): 1140-1151.
doi: 10.13866/j.azr.2021.04.26
|
|
[Lin Jing, Zhao Chengyi, Ma Xiaofei, et al. Optimization of land use structure based on ecosystem service value in the mainstream of Tarim river[J]. Arid Zone Research, 2021, 38(4): 1140-1151. ]
doi: 10.13866/j.azr.2021.04.26
|
[41] |
陈亚宁, 陈亚鹏, 朱成刚, 等. 西北干旱荒漠区生态系统可持续管理理念与模式[J]. 生态学报, 2019, 39(20): 7410-7417.
|
|
[Chen Yaning, Chen Yapeng, Zhu Chenggang, et al. The concept and mode of ecosystem sustainable management in arid desert are as in Northwest China[J]. Acta Ecologica Sinica, 2019, 39(20): 7410-7417. ]
|
[42] |
Geng Q, Zhao Y, Sun S, et al. Spatio-temporal changes and its driving forces of irrigation water requirements for cotton in Xinjiang, China[J]. Agricultural Water Management, 2023, 280: 108218.
|
[43] |
Chen P, Wang S, Liu Y, et al. Water availability in China’s oases decreased between 1987 and 2017[J]. Earth’s Future, 2023, 11(4): e2022EF003340.
|
[44] |
Xia Q Q, Chen Y N, Zhang X Q, et al. Identifying reservoirs and estimating evaporation losses in a large arid inland basin in Northwestern China[J]. Remote Sensing, 2022, 14(5): 1105.
|
[45] |
陈永金, 艾克热木·阿布拉, 张天举, 等. 塔里木河下游生态输水对地下水埋深变化的影响[J]. 干旱区地理, 2021, 44(3): 651-658.
doi: 10.12118/j.issn.1000–6060.2021.03.07
|
|
[Chen Yongjin, Aikeremu Abula, Zhang Tianju, et al. Effects of ecological water conveyance on groundwater depth in the lower reaches of Tarim River[J]. Arid Land Geography, 2021, 44(3): 651-658. ]
doi: 10.12118/j.issn.1000–6060.2021.03.07
|
[46] |
Wu Q, Lane C R, Li X, et al. Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine[J]. Remote Sensing of Environment, 2019, 228: 1-13.
|