干旱区研究 ›› 2024, Vol. 41 ›› Issue (11): 1921-1935.doi: 10.13866/j.azr.2024.11.12 cstr: 32277.14.AZR.20241112
收稿日期:
2024-03-18
修回日期:
2024-06-25
出版日期:
2024-11-15
发布日期:
2024-11-29
通讯作者:
马超. E-mail: mac@hpu.edu.cn作者简介:
王市委(1998-),男,硕士研究生,主要从事生态环境遥感. E-mail: 212204020073@home.hpu.edu.cn
基金资助:
WANG Shiwei1(), ZHANG Haobin1, GUO Wenbing2, MA Chao1,3,4()
Received:
2024-03-18
Revised:
2024-06-25
Published:
2024-11-15
Online:
2024-11-29
摘要:
研究露天矿采矿坑与排土场的植被破坏及复垦状况,可为矿区植被损伤诊断、植被自然恢复和人工修复评估提供生态学依据。基于Sentinel-2数据计算非红边植被指数(NDVI、EVI)和红边植被指数(RENDVI、MSR_RE、CIre、TCARI)为生态修复评价指标;采用回归分析、趋势分析和相关性分析方法,分析2018—2021年采矿活动和气候变化对5个露天矿(乌兰哈达露天矿、经纬露天矿、武家塔露天矿、狼窝渠露天矿和鸿盛源露天矿)植被长势的影响,获取矿区采矿坑、排土场和缓冲区植被的时空变化规律。结果表明:(1) 鸿盛源露天矿采矿坑植被受损程度最严重(拟合斜率k=-0.2996),但其排土场人工修复效果最好(拟合斜率k=0.1364)。(2) 对比5个露天煤矿5 km缓冲区,发现逐像元RENDVI变化趋势均以退化为主,退化面积均占50%以上。(3) 在荒漠化草原地区,植被NDVI变化受降水的影响小于气温。露天开采会加剧荒漠化草原植被的退化,排土场的人工修复对改善区域植被生长状况成效显著。
王市委, 张浩斌, 郭文兵, 马超. 气候和采矿活动对荒漠化草原露天矿区植被的影响[J]. 干旱区研究, 2024, 41(11): 1921-1935.
WANG Shiwei, ZHANG Haobin, GUO Wenbing, MA Chao. Effects of climate and mining activities on vegetation in open-pit mining in desertification grassland[J]. Arid Zone Research, 2024, 41(11): 1921-1935.
表1
5个露天煤矿的基本情况"
研究区 | 乌兰哈达露天矿 | 经纬露天矿 | 武家塔露天矿 | 狼窝渠露天矿 | 鸿盛源露天矿 |
---|---|---|---|---|---|
位置 | 伊金霍洛旗 | 伊金霍洛旗 | 伊金霍洛旗 | 神木市 | 准格尔旗 |
采矿坑面积/hm2 | 119.71 | 186.16 | 185.01 | 0 | 156.52 |
排土场面积/hm2 | 1165.56 | 274.28 | 500.76 | 605.48 | 400.08 |
缓冲区面积/hm2 | 18263.60 | 13483.79 | 15415.13 | 14937.77 | 14244.35 |
初采年份 | 2006年 | 2008年 | 1996年 | 2011年 | 2014年 |
开采时长/a | 15 | 13 | 25 | 10 | 7 |
复垦时长/a | 12 | 11 | 13 | 7 | 4 |
排土场修复措施 | 人工修复 | 人工修复 | 人工修复 | 人工修复 | 人工修复 |
表2
遥感影像数据信息"
获取日期/年月-日 | 卫星 | 研究区 |
---|---|---|
2018-08-12 | Sentinel-2B | 经纬露天矿、武家塔露天矿、CA1 |
2018-08-22 | Sentinel-2B | 狼窝渠露天矿、鸿盛源露天矿、CA2 |
2018-09-21 | Sentinel-2B | 乌兰哈达露天矿、经纬露天矿、武家塔露天矿、狼窝渠露天矿、鸿盛源露天矿、CA1、CA2 |
2019-08-17 | Sentinel-2B | 狼窝渠露天矿、CA2 |
2019-08-27 | Sentinel-2B | 乌兰哈达露天矿、经纬露天矿、武家塔露天矿、鸿盛源露天矿、CA1 |
2019-09-26 | Sentinel-2B | 乌兰哈达露天矿、经纬露天矿、武家塔露天矿、狼窝渠露天矿、鸿盛源露天矿、CA1、CA2 |
2020-08-01 | Sentinel-2B | 鸿盛源露天矿、CA2 |
2020-08-26 | Sentinel-2A | 乌兰哈达露天矿、经纬露天矿、武家塔露天矿、狼窝渠露天矿 |
2020-09-15 | Sentinel-2A | 乌兰哈达露天矿、经纬露天矿、武家塔露天矿、狼窝渠露天矿、鸿盛源露天矿、CA1、CA2 |
2021-08-16 | Sentinel-2B | 乌兰哈达露天矿、经纬露天矿、武家塔露天矿、狼窝渠露天矿、鸿盛源露天矿、CA1、CA2 |
2021-09-10 | Sentinel-2A | 乌兰哈达露天矿、经纬露天矿、武家塔露天矿、狼窝渠露天矿、鸿盛源露天矿、CA2 |
2021-09-20 | Sentinel-2A | CA1 |
表3
植被指数计算方程及其对应波段"
植被指数 | 表达式 | 使用波段 | 作用 | 优缺点 |
---|---|---|---|---|
NDVI | B8、B4 | 通过绿色植物对红光的吸收和对近红光 的反射,监测植被生理机能和生长状况 | 适用范围广,易受土壤背景影响 | |
EVI | B8、B4、B2 | 增强显示波段差异,监测植被生长状况 | 引入蓝光波段减少大气气溶胶散射的影响,计算复杂 | |
RENDVI | B6、B4 | 引入红边波段提高灵敏度,监测植被健康 生长状况 | 引入红边波段抗干扰增强,无法区分植被类型 | |
MSR_RE | B6、B5 | 利用两个红边波段反射率的比值增加对 植被敏感度,监测植被生长的细微变化 | 引入红边波段增强对叶片生物的敏感性,易受土壤背景物质的影响 | |
CIre | B8、B5 | 利用红波段与红边波段反射率的比值, 监测叶片中叶绿素含量 | 引入红边波段提高对叶绿素敏感性,对光照条件敏感 | |
TCARI | B5、B4、B3 | 通过红边、红、绿3个波段反射率的组合, 监测叶片中叶绿素含量的变化 | 引入红边波段提高对叶绿素敏感性,计算较复杂 |
[1] | 董霁红, 吉莉, 房阿曼. 典型干旱半干旱草原矿区生态累积效应[J]. 煤炭学报, 2021, 46(6): 1945-1956. |
[Dong Jihong, Ji Li, Fang Aman. Ecological cumulative effect of mining area in typical arid and semi-arid grassland[J]. Journal of China Coal Society, 2021, 46(6): 1945-1956. ] | |
[2] | Kong Z H, Stringer L, Paavola J, et al. Situating china in the global effort to combat desertification[J]. Land, 2021, 10(7): 702-724. |
[3] | 韩煜, 王琦, 赵伟, 等. 草原区露天煤矿开采对土壤性质和植物群落的影响[J]. 生态学杂志, 2019, 38(11): 3425-3433. |
[Han Yu, Wang Qi, Zhao Wei, et al. Effects of opencast coal mining on soil properties and plant communities of grassland[J]. Chinese Journal of Ecology, 2019, 38(11): 3425-3433. ] | |
[4] | 毕银丽, 彭苏萍, 杜善周. 西部干旱半干旱露天煤矿生态重构技术难点及发展方向[J]. 煤炭学报, 2021, 46(5): 1355-1364. |
[Bi Yinli, Peng Suping, Du Shanzhou. Technological difficulties and future directions of ecological reconstruction in open pit coal mine of the arid and semi-arid areas of Western China[J]. Journal of China Coal Society, 2021, 46(5): 1355-1364. ] | |
[5] |
张建华, 张琨, 刘勇, 等. 山西省露天煤矿复垦区典型人工林凋落物持水性能研究[J]. 干旱区研究, 2023, 40(12): 2043-2052.
doi: 10.13866/j.azr.2023.12.16 |
[Zhang Jianhua, Zhang Kun, Liu Yong, et al. Study on water-holding capacity of litters from typical artificial forests in reclaimed regions of the opencast coal mine in Shanxi Province[J]. Arid Zone Research, 2023, 40(12): 2043-2052. ]
doi: 10.13866/j.azr.2023.12.16 |
|
[6] | 胡振琪, 陈涛. 基于ERDAS的矿区植被覆盖度遥感信息提取研究——以陕西省榆林市神府煤矿区为例[J]. 西北林学院学报, 2008, 23(2): 164-167, 183. |
[Hu Zhenqi, Chen Tao. ERDAS aided exbraction of vegetation fraction from remote sensing information in coalmine area based—a case study of Shenfu coalmine[J]. Journal of Northwest Forestry University, 2008, 23(2): 164-167, 183. ] | |
[7] | 吴立新, 马保东, 刘善军. 基于SPOT卫星NDVI数据的神东矿区植被覆盖动态变化分析[J]. 煤炭学报, 2009, 34(9): 1217-1222. |
[Wu Lixin, Ma Baodong, Liu Shanjun. Analysis to vegetation coverage change in Shendong mining area with SPOT NDVI data[J]. Journal of China Coal Society, 2009, 34(9): 1217-1222. ] | |
[8] | 马保东, 陈绍杰, 吴立新, 等. 基于SPOT-VGT NDVI的矿区植被遥感监测方法[J]. 地理与地理信息科学, 2009, 25(1): 84-87. |
[Ma Baodong, Chen Shaojie, Wu Lixin, et al. Vegetation monitoring method in mining area based on SPOT-VGT NDVI[J]. Geography and Geo-information Science, 2009, 25(1): 84-87. ] | |
[9] | Anupma Prakash, Rajender Gupta. Land-use mapping and change detection in a coal mining area: A case study in the Jharia coalfield, India[J]. International Journal of Remote Sensing, 1998, 19(3): 391-410. |
[10] | Karan S K, Samadder S R, Maiti S K. Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands[J], Journal of Environmental Management, 2016, 182(44): 272-283. |
[11] | 张耀, 周伟. 利用多时相遥感图像动态监测矿区植被覆盖变化——以山西省平朔露天煤矿为例[J]. 西北林学院学报, 2016, 31(4): 206-212, 251. |
[Zhang Yao, Zhou Wei. Monitoring of vegetation coverage by multi-temporal images: A case study of Pingshuo coal mine[J]. Journal of Northwest Forestry University, 2016, 31(4): 206-212, 251. ] | |
[12] | Zhang M, Wang J M, Li S J. Tempo-spatial changes and main anthropogenic influence factors of vegetation fractional coverage in a large-scale opencast coal mine area from 1992 to 2015[J]. Journal of Cleaner Production, 2019, 232(27): 940-952. |
[13] | Erener A. Remote sensing of vegetation health for reclaimed areas of Seyitömer open cast coal mine[J]. International Journal of Coal Geology, 2011, 86(1): 20-26. |
[14] | Hui J W, Bai Z K, Ye B Y, et al. Remote sensing monitoring and evaluation of vegetation restoration in grassland mining areas: A case study of the Shengli mining area in Xilinhot City, China[J]. Land, 2021, 10(7): 743-761. |
[15] | Wang H H, Xie M M, Li H T, et al. Monitoring ecosystem restoration of multiple surface coal mine sites in China via Landsat images on Google Earth Engine[J]. Land Degradation & Development, 2021, 32(10): 2936-2950. |
[16] |
Zhu D Y, Chen T, Zhen N, et al. Monitoring the effects of open-pit mining on the eco-environment using a moving window-based remote sensing ecological index[J]. Environmental Science and Pollution Research International, 2020, 27(13): 15716-15728.
doi: 10.1007/s11356-020-08054-2 pmid: 32086733 |
[17] | 刘英, 胡霄, 岳辉, 等. 基于时间序列模型的戈壁荒漠露天矿生态环境评价[J]. 煤炭科学技术, 2023, 51(12): 125-139. |
[Liu Ying, Hu Xiao, Yue Hui, et al. Ecological environmental assessment of Gobi desert open-pit mine based on time series model[J]. Coal Science and Technology, 2023, 51(12): 125-139. ] | |
[18] | Xiao W, Zhang W K, Ye Y M, et al. Is underground coal mining causing land degradation and significantly damaging ecosystems in semi‐arid areas: A study from an ecological capital perspective[J]. Land Degradation & Development, 2020, 31(15): 1969-1989. |
[19] | Wu Q Y, Xu H N, Yang Y J, et al. Identifying structure change of vegetation under long-term disturbance in the Shendong mining area[J]. Environmental Earth Sciences, 2023, 82(19): 450-468. |
[20] | 周甲男, 马苏, 郑颖娟, 等. 基于生态产品价值视角的矿区植被恢复成效评估: 以神东矿区为例[J]. 环境科学研究, 2023, 36(9): 1728-1736. |
[Zhou Jianan, Ma Su, Zhen Yingjuan, et al. Evaluation of vegetation restoration effect in mining area from the perspective of ecosystem product value: A case study of Shendong mining area[J]. Research of Environmental Sciences, 2023, 36(9): 1728-1736. ] | |
[21] | 李晓婷, 杨丽帆, 邹友峰, 等. 采煤胁迫下干旱区植被生长周期红边指数动态变化[J]. 煤炭学报, 2021, 46(5): 1508-1520. |
[Li Xiaoting, Yang Lifan, Zou Youfeng, et al. Dynamic change of red edge vegetation index within a growth cycle in arid area under coal mining stress[J]. Journal of China Coal Society, 2021, 46(5): 1508-1520. ] | |
[22] | 毕银丽, 刘涛. 露天矿区植被协同演变多源数据时序分析——以准格尔矿区为例[J]. 煤炭科学技术, 2022, 50(1): 293-302. |
[Bi Yinli, Liu Tao. Time series analysis of multi-source data of coordinated evolution of vegetation in open-pit mining area: Taking Jungar Mining Area as an exampl[J]. Coal Science and Technology, 2022, 50(1): 293-302. ] | |
[23] |
Lu J J, Miao Y X, Shi W, et al. Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy sensor[J]. Scientific Reports, 2017, 7(1): 14073-14083.
doi: 10.1038/s41598-017-14597-1 pmid: 29074943 |
[24] | Elsayed Salah, Pablo Rischbe, Schmidhalter Urs. Comparing the performance of active and passive reflectance sensors to assess the normalized relative canopy temperature and grain yield of drought-stressed barley cultivars[J]. Field Crops Research, 2015, 177(38): 148-160. |
[25] | Wu C Y, Niu Z, Tang Q, et al. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation[J]. Agricultural and Forest Meteorology, 2008, 148(8): 1230-1241. |
[26] |
Gitelson A A, Gritz Y, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algo-rithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal of Plant Physiology, 2003, 160(3): 271-282.
doi: 10.1078/0176-1617-00887 pmid: 12749084 |
[27] | Hunt E R, Daughtry C S T, Eitel J U H, et al. Remote sensing leaf chlorophyll content using a visible band index[J]. Agronomy Journal, 2011, 103(4): 1090-1099. |
[28] | Hird J N, Castilla G, Mcdermid G J, et al. A simple transformation for visualizing non-seasonal landscape change from dense time series of satellite data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(8): 3372-3383. |
[29] |
马超, 李晓婷, 项晓铭, 等. 浑善达克沙地腹地和边缘交错区NDVI演变对气候变化和人类活动的响应[J]. 资源科学, 2023, 45(1): 204-221.
doi: 10.18402/resci.2023.01.15 |
[Ma Chao, Li Xiaoting, Xiang Xiaoming, et al, Responses of NDVI evolution to climate change and human activities in the Hunshandake Sandy Land and its ecotones[J]. Resources Science, 2023, 45(1): 204-221. ]
doi: 10.18402/resci.2023.01.15 |
|
[30] | 王薇. 基于时序特征变化的矿山复绿遥感监测与评价[D]. 北京: 中国地质大学(北京), 2021. |
[Wang Wei. Remote Sensing Monitoring and Evaluation of Mine Regreening Based on Time Series Feature Change[D]. Beijing: China University of Geosciences Beijing, 2021. ] | |
[31] | 李军, 彭传盈, 张成业, 等. 基于大样本的露天开采植被扰动范围一般性统计规律——以神东煤炭基地为例[J]. 煤炭学报, 2023, 48(2): 975-985. |
[Li Jun, Peng Chuanying, Zhang Chengye, et al. General statistical rules of vegetation disturbance range by open-pit mining based on a large sample: A case study of Shendong coal base[J]. Journal of China Coal Society, 2023, 48(2): 975-985. ] | |
[32] | Zhang C Y, Zheng H Y, Li J, et al. A method for identifying the spatial range of mining disturbance based on contribution quantification and significance test[J]. International Journal of Environmental Research and Public Health, 2022, 19(9): 5176-5176. |
[33] | Sun X F, Yuan L G, Liu M, et al. Quantitative estimation for the impact of mining activities on vegetation phenology and identifying its controlling factors from Sentinel-2 time series[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 111(24): 102814-102827. |
[34] | Zheng K Y, Tan L S, Sun Y W, et al. Impacts of climate change and anthropogenic activities on vegetation change: Evidence from typical areas in China[J]. Ecological Indicators, 2021, 126(21): 107648-107662. |
[35] | Zhao D, Hou H P, Liu H Y, et al. Microbial community structure and predictive functional analysis in reclaimed soil with different vegetation types: The example of the Xiaoyi mine waste dump in Shanxi[J]. Land, 2023, 12(2): 456-470. |
[36] | 雷少刚, 夏嘉南, 卞正富, 等. 论露天矿区近自然生态修复[J]. 煤炭学报, 2024, 49(4): 2021-2030. |
[Lei Shaogang, Xia Jianan, Bian Zhengfu, et al. Near-natural ecological restoration in open-pit mine area[J]. Journal of China Coal Society, 2024, 49(4): 2021-2030. ] | |
[37] | 李树志, 李学良, 尹大伟. 碳中和背景下煤炭矿山生态修复的几个基本问题[J]. 煤炭科学技术, 2022, 50(1): 286-292. |
[Li Shuzhi, Li Xueliang, Yin Dawei. Several basic issues of ecological restoration of coal mines under background of carbon neutrality[J]. Coal Science and Technology, 2022, 50(1): 286-292. ] | |
[38] | 邢龙飞, 黄赳, 雷少刚, 等. 锡林浩特市胜利矿区近30 a植被覆盖度变化研究[J]. 河南理工大学学报(自然科学版), 2019, 38(3): 61-69. |
[Xing Longfei, Huang Jiu, Lei Shaogang, et al. Study on vegetation coverage change of Xilinhot’s Shengli mining area in recent 30 years[J]. Journal of Henan Polytechnic University (Natural Science), 2019, 38(3): 61-69. ] | |
[39] | 吴秦豫, 姚喜军, 梁洁, 等. 鄂尔多斯市煤矿区植被覆盖改善和退化效应的时空强度[J]. 干旱区资源与环境, 2022, 36(8): 101-109. |
[Wu Qinyu, Yao Xijun, Liang Jie, et al. Spatial and temporal intensity of vegetation cover improvement and degradation in coal mining areas of Erdos City[J]. Journal of Arid Land Resources and Environment, 2022, 36(8): 101-109. ] | |
[40] |
Wang S F, Cao Y G, Pietrzykowski M, et al. Spatial distribution of soil bulk density and its relationship with slope and vegetation allocation model in rehabilitation of dumping site in loess open-pit mine area[J]. Environmental Monitoring and Assessment, 2020, 192(11): 740-758.
doi: 10.1007/s10661-020-08692-6 pmid: 33128682 |
[1] | 李可璇, 张蕾, 李豪, 张恩月, 李育桢, 宋彩云, 刘庚. 基于MSPA模型和电路理论的晋西北国土空间生态修复关键区域识别[J]. 干旱区研究, 2024, 41(9): 1593-1604. |
[2] | 杨雅青, 张翀, 张婕, 王玉丹. 关中地区土壤干湿变化及对气候的响应[J]. 干旱区研究, 2024, 41(2): 261-271. |
[3] | 包玉斌,王耀宗,路锋,刘自增,马大为,杨勇,吴娟,张永康. 六盘山区国土空间生态安全格局构建与分区优化[J]. 干旱区研究, 2023, 40(7): 1172-1183. |
[4] | 梁博明, 刘新, 郝媛媛, 楚彬, 唐庄生. 基于5种植被指数的荒漠区植被生物量提取研究[J]. 干旱区研究, 2023, 40(4): 647-654. |
[5] | 阿热孜古力·肉孜, 买买提·沙吾提, 何旭刚, 冶晓文. 基于多植被指数组合的棉花叶片叶绿素含量估算[J]. 干旱区研究, 2023, 40(11): 1865-1874. |
[6] | 曹永香,毛东雷,薛杰,苏松领,开买尔古丽·阿不来提,蔡富艳. 绿洲-沙漠过渡带植被覆盖动态变化及其驱动因素——以新疆策勒为例[J]. 干旱区研究, 2022, 39(2): 510-521. |
[7] | 李生宇,范敬龙,王海峰,崔珂军,雷加强. 蒙古高原交通干线风沙(雪)危害防治技术方案[J]. 干旱区研究, 2021, 38(6): 1760-1770. |
[8] | 王凯,那恩航,张亮,刘锋. 阜新露天煤矿排土场边坡土壤团聚体稳定性及分形特征[J]. 干旱区研究, 2021, 38(2): 402-410. |
[9] | 杨怡, 吴世新, 庄庆威, 牛雅萱. 2000—2018年古尔班通古特沙漠EVI时空变化特征[J]. 干旱区研究, 2019, 36(6): 1512-1520. |
[10] | 潘光耀,穆桂金,岳健,贺俊霞,孙琳. 2001—2010年策勒绿洲-沙漠过渡带的变化及其成因[J]. 干旱区研究, 2014, 31(1): 169-175. |
[11] | 周江, 裴宗平, 胡佳佳, 贾含帅, 朱琳. 干旱胁迫下3种岩石边坡生态修复植物的抗旱性[J]. 干旱区研究, 2012, 29(3): 440-444. |
[12] | 孙艳玲, 郭鹏. 1982-2006年华北植被指数时空变化特征[J]. 干旱区研究, 2012, 29(2): 187-193. |
[13] | 莫宏伟,任志远. 陕西关中地区植被指数变化多尺度分析[J]. 干旱区研究, 2012, 29(1): 59-63. |
[14] | 唐晓岚, 杜瑶. 干旱区生态治理及绿色基础设施构建——以新疆塔里木河下游为例[J]. 干旱区研究, 2011, 28(3): 413-420. |
|