干旱区研究 ›› 2025, Vol. 42 ›› Issue (7): 1196-1210.doi: 10.13866/j.azr.2025.07.04 cstr: 32277.14.AZR.20250704

• 水土资源 • 上一篇    下一篇

干旱区地下水埋深对土壤水盐运移影响的模拟与调控——以阿克苏河下游河岸带典型田块为例

鲁力1,2(), 郭建华3(), 王友年4   

  1. 1.吉林大学水资源与环境研究所,吉林 长春 130000
    2.新疆大学地质与矿业工程学院,新疆 乌鲁木齐 830046
    3.中国地质调查局海口海洋地质调查中心,海南 海口 571127
    4.新疆水利水电勘测设计研究院,新疆 乌鲁木齐 830000
  • 收稿日期:2024-08-11 修回日期:2025-03-28 出版日期:2025-07-15 发布日期:2025-07-07
  • 通讯作者: 郭建华. E-mail: guojianhuahkzx@126.com
  • 作者简介:鲁力(1995-),男,博士研究生,主要研究方向为水文地质与环境地质. E-mail: luli0401@sina.com
  • 基金资助:
    国家自然科学基金项目(U23A2024);国家地下水监测网运维项目(DD20251302)

Depth on soil water-salt transport in arid regions: A case study of representative farmland in the riparian zone of lower Aksu River

LU Li1,2(), GUO Jianhua3(), WANG Younian4   

  1. 1. Institute of Water Resources and Environment, Jilin University, Changchun 130000, Jilin, China
    2. College of Geology and Mining Engineering, Xinjiang University, Urumqi 830046, Xinjiang, China
    3. Haikou Marine Geological Survey Center of China Geological Survey, Haikou 571127, Hainan, China
    4. Xinjiang Water Resources and Hydropower Survey and Design Institute, Urumqi 830000, Xinjiang, China
  • Received:2024-08-11 Revised:2025-03-28 Published:2025-07-15 Online:2025-07-07

摘要: 干旱区流域下游灌区盐渍化的问题加剧了土壤退化、作物减产及河水咸化,制约着农业生产与生态环境的稳定。其形成受地下水埋深及灌排管理不当的影响,科学制定土壤水盐调控措施是解决上述问题的关键。本文在阿克苏河下游河岸带典型田块开展试验,基于动态观测和野外调查数据,采用HYDRUS-1D软件建立非饱和模型,模拟棉花生育期内土壤水盐运移规律,确定合理调控方案并探讨地下水稳定蒸发深度与河岸带土壤结构的关系。结果表明:土壤含水率、TDS识别与验证精度分别为0.862、0.752,均方根误差分别为0.033、0.008,表明模型可靠性较高;灌溉入渗补给占土壤水总补给量的85%,带入盐分127.164 mg·cm-2,土壤水向潜水排泄占总排泄量的59.67%,排出盐分267.78 mg·cm-2,水量均衡差为9.2%,脱盐率为33.89%;考虑作物需水规律和土壤盐分动态变化情况,将70 cm作为最佳的灌溉水量的同时控制地下水埋深在220 cm左右,可有效降低根系层土壤盐分;砂夹壤结构中壤土层位置对地下水的临界蒸发深度(150 cm)影响小,主要影响土壤稳定蒸发深度与实际蒸发量,壤土层越靠近地表,稳定蒸发深度越浅,实际蒸发量越小。研究结果可为干旱区盐渍化防治以及水资源的合理配置提供参考。

关键词: 水盐调控, 棉花, 干旱区, 河岸带, 地下水埋深, 稳定蒸发深度

Abstract:

Salinization in the irrigation areas of watersheds in downstream arid regions exacerbates soil degradation, crop yield reduction, and river water salinization, severely limiting agricultural production and harming ecological stability. It arises in a manner influenced by the depth of groundwater and poor irrigation and drainage management. Scientifically formulating measures to regulate soil water-salt is key to addressing these issues. In this study, field experiments were conducted in a typical farmland area of the riparian zone by the downstream part of Aksu River. Based on dynamic observations and field survey data, an unsaturated model was established using the HYDRUS-1D software to simulate soil water and salt transport patterns during the cotton growing season, determine appropriate regulatory strategies, and explore the relationship between the stable groundwater evaporation depth and riparian soil structure. The results revealed that the identification and validation accuracy of the soil moisture content and total dissolved solids were 0.862 and 0.752 with root mean square errors of 0.033 and 0.008, respectively, indicating that the model was highly reliable. Irrigation infiltration accounted for 85% of the total soil water recharge, introducing 127.164 mg·cm-2 of salt, while soil water discharge to groundwater accounted for 59.67% of the total discharge, removing 267.78 mg·cm-2 of salt. The water balance error was 9.2% and the desalination rate was 33.89%. Considering the demand for water for crops and soil salinity dynamics, setting the irrigation water depth to 70 cm while maintaining the groundwater depth at approximately 220 cm can effectively reduce the soil salinity in the root zone. In sandy loam structures, the position of the loam layer has little effect on the critical evaporation depth of groundwater (150 cm), but significantly influences the stable evaporation depth and actual evaporation. If the loam layer is closer to the surface, the stable evaporation depth becomes shallower and the actual evaporation decreases. The findings provide a reference for preventing salinization and managing water resources in arid regions.

Key words: water-salt regulation, cotton, arid regions, riparian zone, groundwater depth, stable evaporation depth