干旱区研究 ›› 2024, Vol. 41 ›› Issue (5): 730-741.doi: 10.13866/j.azr.2024.05.02

• 天气与气候 • 上一篇    下一篇

内蒙古半干旱区气溶胶散射特性及影响因素

叶虎1,2(), 裴浩2,3(), 姜艳丰2,4, 那庆2,5, 张立伟2,6   

  1. 1.内蒙古自治区气象服务中心,内蒙古 呼和浩特 010051
    2.内蒙古自治区荒漠生态气象中心,内蒙古 呼和浩特 010051
    3.内蒙古自治区气象局,内蒙古 呼和浩特 010051
    4.内蒙古自治区气象科学研究所,内蒙古 呼和浩特 010051
    5.内蒙古自治区气象数据中心,内蒙古 呼和浩特 010051
    6.锡林郭勒盟气象局,内蒙古 锡林浩特 026000
  • 收稿日期:2023-08-29 修回日期:2023-11-06 出版日期:2024-05-15 发布日期:2024-05-29
  • 通讯作者: 裴浩. E-mail: peihao5217@sohu.com
  • 作者简介:叶虎(1980-),男,高级工程师,主要从事气象服务技术研究与应用. E-mail: yehu_135@sina.com.cn
  • 基金资助:
    国家自然科学基金项目(41065003)

Properties of aerosol scattering and its influencing factors in semiarid areas of Inner Mongolia

YE Hu1,2(), PEI Hao2,3(), JIANG Yanfeng2,4, NA Qing2,5, ZHANG Liwei2,6   

  1. 1. Inner Mongolia Service Center of Meteorology, Hohhot 010051, Inner Mongolia, China
    2. Inner Mongolia Desert Ecological Meteorological Center, Hohhot 010051, Inner Mongolia, China
    3. Inner Mongolia Meteorological Bureau, Hohhot 010051, Inner Mongolia, China
    4. Inner Mongolia Meteorological Science Research Institute, Hohhot 010051, Inner Mongolia, China
    5. Inner Mongolia Meteorological Data Center, Hohhot 010051, Inner Mongolia, China
    6. Xilin Gol League Meteorological Bureau, Xilinhot 026000, Inner Mongolia, China
  • Received:2023-08-29 Revised:2023-11-06 Online:2024-05-15 Published:2024-05-29

摘要:

利用2020年7月9日至2023年7月8日锡林浩特市散射系数、黑碳(BC)、PM2.5、PM10、SO2、NO2质量浓度以及气象要素观测资料,从气溶胶散射特性的时间变化、概率密度分布、与不同类型气溶胶和气象因子的相关程度等方面展开分析,并针对该地区开展散射系数等级划分。结果表明:(1) 该地区气溶胶散射能力整体水平较低,但是春季沙尘输送、冬季及夜晚逆温出现频率较高会造成该地区气溶胶散射能力的明显增强。(2) 粒径越小的气溶胶与散射系数的相关程度越高,与散射系数的相关系数大小依次为BC>PM2.5>PM10,但同时具有季节差异性,此外秋、冬季硝酸盐颗粒是造成该地区散射能力增强的重要因素,夏、秋、冬季硫酸盐颗粒对该地区的散射能力也具有一定贡献。(3) 以相关系数的增幅作为当前气象因素对散射系数的贡献率,得到当前气象因素对散射系数的贡献率在1%~2%之间。

关键词: 半干旱区, 气溶胶, 散射系数, 等级划分, 贡献率, 内蒙古

Abstract:

From observational data of scattering coefficients, the mass concentrations of aerosols and pollutants, and meteorological elements, collected from July 9, 2020 to July 8, 2023 in Xilinhot, the characteristics of aerosol scattering coefficients—including the variation over time, probability density distribution, and correlation with different types of aerosols and meteorological impact factors—are studied. Consequently, the scattering coefficient levels are classified. The results show that: (1) the overall level of aerosol scattering is relatively low, but the transport of dust aerosol in spring and the high frequency of temperature inversions in winter and at night may increase aerosol scattering. (2) The smaller the aerosol, the higher the correlation between aerosols and scattering coefficients, with the correlation coefficients following the order BC>PM2.5>PM10, although seasonal differences are observed. In addition, NO2 is an important factor in increasing scattering in autumn, whereas SO2 contributes to scattering in summer, autumn, and winter. (3) The increases in correlation coefficients are considered as the contribution rates of current meteorological factors to scattering coefficients, with contribution rates of between 1% and 2%.

Key words: the semiarid area, aerosol, scattering coefficient, gradation, contribution rate, Inner Mongolia