干旱区研究 ›› 2022, Vol. 39 ›› Issue (5): 1655-1662.doi: 10.13866/j.azr.2022.05.29 cstr: 32277.14.AZR.20220529
申志博1(
),韩耀光1,王家力1,陈康怡1,胡洋1,朱新萍1,2(
),贾宏涛1,2
收稿日期:2022-01-14
修回日期:2022-06-13
出版日期:2022-09-15
发布日期:2022-10-25
作者简介:申志博(1996-),男,硕士研究生,主要从事陆地生态系统温室气体排放研究. E-mail: 基金资助:
SHEN Zhibo1(
),HAN Yaoguang1,WANG Jiali1,CHEN Kangyi1,HU Yang1,ZHU Xinping1,2(
),JIA Hongtao1,2
Received:2022-01-14
Revised:2022-06-13
Published:2022-09-15
Online:2022-10-25
摘要:
在气候变化背景下,大气氮沉降的增加会对干旱区高寒湿地N2O排放产生影响。以天山中部的巴音布鲁克天鹅湖高寒湿地,不同水分条件的常年淹水区、季节性淹水区和常年干燥区为研究区,设置3个氮添加量处理(0、10 kg ·hm-2·a-1和20 kg ·hm-2·a-1),采用静态箱-气相色谱法监测了植物生长季生态系统N2O的排放量,并探究了N2O排放与主要环境因子之间的关系。研究结果表明:(1) 在不同水分条件下,氮素增加显著促进了生态系统N2O的排放(P<0.05);在植物生长季不增氮的处理下,生态系统N2O累积排放量表现为吸收,10 kg ·hm-2·a-1和20 kg ·hm-2·a-1处理N2O累积排放量均表现为排放;氮沉降量增加显著增加了不同水分条件下N2O累积排放量,氮沉降增加会促进湿地生态系统由N2O的“汇”向“源”转变。(2) 氮施加量极显著影响生态系统N2O排放速率(P<0.01),季节性淹水条件生态系统N2O平均排放速率(F)与施氮量(N)、土壤5 cm地温(T)呈多元一次方程关系(F=-2.763+0.209N+0.151T,R2=0.483,P<0.01)。综上所述,氮沉降的增加促进了干旱区高寒湿地生态系统N2O排放。
申志博,韩耀光,王家力,陈康怡,胡洋,朱新萍,贾宏涛. 氮沉降促进西北干旱区高寒湿地生态系统N2O排放[J]. 干旱区研究, 2022, 39(5): 1655-1662.
SHEN Zhibo,HAN Yaoguang,WANG Jiali,CHEN Kangyi,HU Yang,ZHU Xinping,JIA Hongtao. Nitrogen deposition increases N2O emission in an alpine wetland in the arid region of Northwest China[J]. Arid Zone Research, 2022, 39(5): 1655-1662.
表2
N2O排放与土壤温度的拟合关系(n=11)"
| 处理 | 方程 | R2 | P | |
|---|---|---|---|---|
| 常年淹水区 | N0 | y=2.256lnx-6.407 | 0.137 | 0.262 |
| N10 | y=-0.051x2+0.875x-1.594 | 0.348 | 0.181 | |
| N20 | y=0.029x2+0.672x+6.933 | 0.082 | 0.713 | |
| 季节性淹水区 | N0 | y=-0.04x2+0.751x-3.42 | 0.409 | 0.122 |
| N10 | y=-0.025x2+0.826x-4.040 | 0.511 | 0.041* | |
| N20 | y=0.346x-0.939 | 0.701 | 0.001** | |
| 常年干燥区 | N0 | y=0.069x-1.962 | 0.111 | 0.831 |
| N10 | y=0.241x-2.069 | 0.165 | 0.216 | |
| N20 | y=0.179x+1.366 | 0.216 | 0.149 |
表3
氮沉降对不同生态系统N2O排放速率的影响"
| 生态系统 | 施氮种类 | 氮添加量 /(kg·hm-2·a-1) | 对照组N2O平均排放速率 | 氮沉降对N2O排放的影响 |
|---|---|---|---|---|
| 若尔盖高寒湿地[ | NH4NO3 | 0~80 | 13.00 μg·m-2·h-1 | 10~40 kg·hm-2·a-1显著促进(P<0.05),其余浓度无显著影响(P<0.05) |
| 青藏高原高寒草甸[ | NH4NO3 | 0~40 | 7.67 μg·m-2·h-1 | 显著促进(P<0.05) |
| 三江平原泥炭湿地[ | NH4NO3 | 0~80 | 6.60 μg·m-2·h-1 | 40 kg·hm-2·a-1显著促进(P<0.05),其余浓度无显著影响(P<0.05) |
| 昆仑山高寒草地[ | 尿素 | 0~16 | 50.00 μg·m-2· d-1 | 显著促进(P<0.05) |
| 水稻田[ | 尿素 | 0~480 | 0.88μg·m-2·h-1 | 显著促进(P<0.05) |
| 巴音布鲁克天鹅湖高寒湿地(本研究) | 尿素,NH4NO3 | 0~20 | 常年淹水区:45.75 μg·m-2·d-1 季节性淹水区:41.37 μg·m-2·d-1 常年干燥区:53.57 μg·m-2·d-1 | 显著促进(P<0.05) |
| [1] | Pachauri R K, Allen M R, Barros V R, et al. Climate change 2014:Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. IPCC, 2014. |
| [2] | Jylhä K, Tuomenvirta H, Ruosteenoja K. Climate change projections for Finland during the 21 st century[J]. Boreal Environment Research, 2004, 9(2): 127-152. |
| [3] | 胡保安, 贾宏涛, 朱新萍, 等. 不同水分条件下巴音布鲁克天鹅湖高寒湿地夏季N2O日排放特征[J]. 生态环境学报, 2015, 24(5): 811-817. |
| [Hu Bao’an, Jia Hongtao, Zhu Xinping, et al. Daily characteristics of summer N2O emission under different water conditions at Bayinbuluke Swan Lake alpine wetland[J]. Ecology and Environmental Sciences, 2015, 24(5): 811-817. ] | |
| [4] |
Yang J, Liu J, Hu X, et al. Effect of water table level on CO2, CH4 and N2O emissions in a freshwater marsh of Northeast China[J]. Soil Biology and Biochemistry, 2013, 61: 52-60.
doi: 10.1016/j.soilbio.2013.02.009 |
| [5] |
Regina K, Nykänen H, Silvola J, et al. Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity[J]. Biogeochemistry, 1996, 35(3): 401-418.
doi: 10.1007/BF02183033 |
| [6] |
Jauhiainen J, Silvennoinen H, Hämäläinen R, et al. Nitrous oxide fluxes from tropical peat with different disturbance history and management[J]. Biogeosciences, 2012, 9(4): 1337-1350.
doi: 10.5194/bg-9-1337-2012 |
| [7] |
Ackerman D, Millet D B, Chen X. Global estimates of inorganic nitrogen deposition across four decades[J]. Global Biogeochemical Cycles, 2019, 33(1): 100-107.
doi: 10.1029/2018GB005990 |
| [8] |
曹登超, 高霄鹏, 李磊, 等. 氮磷添加对昆仑山北坡高山草地N2O排放的影响[J]. 植物生态学报, 2019, 43(2): 165-173.
doi: 10.17521/cjpe.2018.0267 |
|
[Cao Dengchao, Gao Xiaopeng, Li Lei, et al. Effects of nitrogen and phosphorus additions on nitrous oxide emissions from alpine grass-land in the northern slope of Kunlun Mountains, China[J]. Chinese Journal of Plant Ecology, 2019, 43(2): 165-173. ]
doi: 10.17521/cjpe.2018.0267 |
|
| [9] | 张艺, 王春梅, 许可, 等. 若尔盖湿地土壤温室气体排放对模拟氮沉降增加的初期响应[J]. 北京林业大学学报, 2016, 38(8): 54-63. |
| [Zhang Yi, Wang Chunmei, Xu Ke, et al. Short-term effect of increasing nitrogen deposition on greenhouse gas emissions in Zoige wetland, western China[J]. Journal of Beijing Forestry University, 2016, 38(8): 54-63. ] | |
| [10] | 宋亚娜, 林艳, 陈子强. 氮肥水平对稻田细菌群落及N2O排放的影响[J]. 中国生态农业学报, 2017, 25(9): 1266-1275. |
| [Song Ya’na, Lin Yan, Chen Ziqiang. Effect of nitrogen fertilizer level on bacterial community and N2O emission in paddy soil[J]. Chinese Journal of Eco-Agriculture, 2017, 25(9): 1266-1275. ] | |
| [11] | 陈思, 张克强, 麻晓越, 等. 外源硝态氮对典型耕作土壤冻结过程N2O排放的影响[J]. 环境科学研究, 2014, 27(6): 635-641. |
| [Chen Si, Zhang Keqiang, Ma Xiaoyue, et al. Effects of nitrate nitrogen application on N2O emissions from three types of soil during freezing process[J]. Research of Environmental Sciences, 2014, 27(6): 635-641. ] | |
| [12] | 王孟雪. 东北寒地稻作水氮互作的温室气体排放特征研究[D]. 哈尔滨: 东北农业大学, 2016. |
| [Wang Mengxue. Greenhouse Gases Emissions from Rice Paddy Field under Different Water and Nitrogenous Interaction in Cold Region of Northeast China[D]. Harbin: Northeast Agricultural University, 2016. ] | |
| [13] | 葛怡情. 增温氮沉降对藏北高寒草甸N2O排放的影响[D]. 呼和浩特: 内蒙古大学, 2020. |
| [Ge Yiqing. Effects of Warming and Nitrogen Deposition on N2O Emission in a Meadow in North Tibet[D]. Hohhot: Inner Mongolia Agricultural University, 2020. ] | |
| [14] | 胡保安, 贾宏涛, 朱新萍, 等. 巴音布鲁克高寒湿地夏季CO2和CH4通量日变化研究[J]. 干旱区资源与环境, 2016, 30(6): 167-172. |
| [Hu Bao’an, Jia Hongtao, Zhu Xinping, et al. Daily characteristics of summer CO2 and CH4 fluxes under different water conditions at Bayinbuluke alpine wetland[J]. Journal of Arid Land Resources and Environment, 2016, 30(6): 167-172. ] | |
| [15] | 徐静静. 巴音布鲁克天鹅湖高寒湿地土壤微生物群落结构及酶活性特征[D]. 乌鲁木齐: 新疆农业大学, 2018. |
| [Xu Jingjing. Soil Microbial Community Structure and Enzymatic Activity in Swan Lake Alpine Wetland of Bayanbulak[D]. Urumqi: Xinjiang Agricultural University, 2018. ] | |
| [16] |
Li K, Gong Y, Wei S, et al. Responses of CH4, CO2 and N2O fluxes to increasing nitrogen deposition in alpine grassland of the Tianshan Mountains[J]. Chemosphere, 2012, 88(1): 140-143.
doi: 10.1016/j.chemosphere.2012.02.077 |
| [17] |
Bobbink R, Hicks K, Galloway J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis[J]. Ecological Applications, 2010, 20: 30-59.
doi: 10.1890/08-1140.1 |
| [18] |
Liu X, Zhang Y, Han W, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438): 459-462.
doi: 10.1038/nature11917 |
| [19] | Wu H, Wang X, Ganjurjav H, et al. Effects of increased precipitation combined with nitrogen addition and increased temperature on methane fluxes in alpine meadows of the Tibetan Plateau[J]. Science of the Total Environment, 2020, 705: 135818. |
| [20] |
Fluckiger J, Dallenbach A, Blunier T. Variations in atmospheric N2O concentration during abrupt climatic changes[J]. Science, 1999, 285(5425): 227.
pmid: 10398593 |
| [21] | Fuka M M, Braker S H G, Philippot L. Molecular tools to assess the diversity and density of denitrifying bacteria in their habitats[C]// Elsevier: Biology of the Nitrogen Cycle, 2007: 313-330. |
| [22] | Davidson E A. Fluxes of Nitrous Oxide and Nitric Oxide from Terrestrial Ecosystems[M]. Washington: American Society for Microbiology, 1991: 219-235. |
| [23] | 杨紫唯, 车子涵, 刘芙梅, 等. 降水梯度对青海湖河源湿地温室气体排放日变化的影响[J]. 干旱区研究, 2022, 39(3): 754-766. |
| [Yang Ziwei, Che Zihan, Liu Fumei, et al. Precipitation gradient influence on daily greenhouse gas emission fluxes from a Qinghai Lake wetland[J]. Arid Zone Research, 2022, 39(3): 754-766. ] | |
| [24] | 徐华, 邢光喜, 蔡祖聪, 等. 土壤水分状况和质地对稻田N2O排放的影响[J]. 土壤学报, 2000, 37(4): 499-505. |
| [Xu Hua, Xing Guangxi, Cai Zucong, et al. Effect of soil water regime and soil texture on N2O emission from rice paddy field[J]. Acta Pedologica Sinica, 2000, 37(4): 499-505. ] | |
| [25] | Mentzer J L, Goodman R M, Balser T C. Microbial response over time to hydrologic and fertilization treatments in a simulated wet prairie[J]. Plant & Soil, 2006, 284(1-2): 85-100. |
| [26] | 李英臣, 宋长春, 刘德燕. 湿地土壤N2O排放研究进展[J]. 湿地科学, 2008, 6(2): 124-129. |
| [Li Yingchen, Song Changchun, Liu Deyan. Advances in studies of N2O emission in wetland soils[J]. Wetland Science, 2008, 6(2): 124-129. ] | |
| [27] |
Yan Y, Hasbagan G, Hu G, et al. Nitrogen deposition induced significant increase of N2O emissions in an dry alpine meadow on the central Qinghai-Tibetan Plateau[J]. Agriculture Ecosystems & Environment, 2018, 265: 45-53.
doi: 10.1016/j.agee.2018.05.031 |
| [28] | Firestone M, Davidson E. Microbiological basis of NO and N2O production and consumption in soil[J]. Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere, 1989, 47: 7-21. |
| [29] | Qu S, Xu R, Yu J, et al. Nitrogen deposition accelerates greenhouse gas emissions at an alpine steppe site on the Tibetan Plateau[J]. Science of the Total Environment, 2020, 765(1): 144277. |
| [30] | 梁艳, 干珠扎布, 曹旭娟, 等. 模拟氮沉降对藏北高寒草甸温室气体排放的影响[J]. 生态学报, 2017, 37(2): 485-494. |
| [Liang Yan, Hasbagan Ganjurjav, Cao Xujuan, et al. Effects of simulated nitrogen deposition on greenhouse gas emissions from alpine meadows in northern Tibet[J]. Acta Ecologica Sinica, 2017, 37(2): 485-494. ] | |
| [31] | 王肖娟, 王永强, 赵双玲, 等. 不同灌溉方式及施肥量对稻田土壤N2O排放的影响[J]. 大麦与谷类科学, 2018, 35(3): 1-4, 21. |
| [Wang Xiaojuan, Wang Yongqiang, Zhao Shuangling, et al. Effects of drip irrigation and flood irrigation under different application rates of nitrogen fertilizer on N2O emission in rice field[J]. Barley and Cereal Sciences, 2018, 35(3): 1-4, 21. ] | |
| [32] | 宋长春, 张丽华, 王毅勇, 等. 淡水沼泽湿地CO2、CH4和N2O排放通量年际变化及其对氮输入的响应[J]. 环境科学, 2006, 27(12): 2369-2375. |
| [Song Changchun, Zhang Lihua, Wang Yiyong, et al. Annual dynamics of CO2, CH4, N2O emissions from freshwater marshes and affected by nitrogen fertilization[J]. Environmental Science, 2006, 27(12): 2369-2375. ] | |
| [33] | 黄耀, 焦燕, 宗良纲, 等. 土壤理化特性对麦田N2O排放影响的研究[J]. 环境科学学报, 2002, 22(5): 598-602. |
| [Huang Yao, Jiao Yan, Zong Lianggang, et al. N2O emission from wheat cultivated soils as influenced by soil physicochemical properties[J]. Acta Scientiae Circumstantiae, 2002, 22(5): 598-602. ] | |
| [34] | 张荣涛, 隋心, 许楠, 等. 三江平原小叶章湿地温室气体排放及其对模拟氮沉降的响应[J]. 应用生态学报, 2018, 29(10): 3191-3198. |
| [Zhang Rongtao, Sui Xin, Xu Nan, et al. Responses of greenhouse gas emission to simulated nitrogen deposition in Calamagrostis angustifolia wetlands of Sanjiang Plain, China[J]. Chinese Journal of Applied Ecology, 2018, 29(10): 3191-3198. ] | |
| [35] |
杨兰芳, 蔡祖聪. 施氮和玉米生长对土壤氧化亚氮排放的影响[J]. 应用生态学报, 2005, 16(1): 100-104.
pmid: 15852966 |
|
[Yang Lanfang, Cai Zucong. Effects of N application and maize growth on N2O emission from soil[J]. Chinese Journal of Applied Ecology, 2005, 16(1): 100-104. ]
pmid: 15852966 |
|
| [36] | 魏达, 旭日, 王迎红, 等. 青藏高原纳木错高寒草原温室气体通量及与环境因子关系研究[J]. 草地学报, 2011, 19(3): 412-419. |
| [Wei Da, Xu Ri, Wang Yinghong, et al. CH4, N2O and CO2 fluxes and correlation with environmental factors of alpine steppe grassland in Nam Co Region of Tibetan Plateau[J]. Acta Agrestia Sinica, 2011, 19(3): 412-419. ] | |
| [37] | 胡保安. 天鹅湖高寒湿地CO2、CH4和N2O排放对水分变化的响应[D]. 乌鲁木齐: 新疆农业大学, 2017. |
| [Hu Bao’an. Response of CO2, CH4 and N2O Emissions to Water Change in the Alpine Wetland of Swan Lake[D]. Urumqi: Xinjiang Agricultural University, 2017. ] |
| [1] | 王岱, 李欣, 张雯, 马阳, 王素艳, 李佳瑶. 海温与海冰对宁夏汛期降水分布特征异常的协同影响[J]. 干旱区研究, 2024, 41(8): 1288-1299. |
| [2] | 吴朝巧, 林菲, 牛俊杰, 耿甜伟. 山西中部城市群生态系统服务对土地利用格局变化的响应[J]. 干旱区研究, 2024, 41(7): 1153-1166. |
| [3] | 周建伟, 罗君, 马雪洋. 拉萨河流域土地利用与生态系统服务价值时空演变及驱动因素[J]. 干旱区研究, 2024, 41(6): 1021-1031. |
| [4] | 董彭蓓, 任宗萍, 李鹏, 王凯博, 贺国凯, 王璞. 土地利用变化下宁夏生态系统服务权衡协同关系研究[J]. 干旱区研究, 2024, 41(6): 1032-1044. |
| [5] | 杨竹青, 王磊, 张雪, 申建香, 张伊婧, 李欣宇, 张波, 牛金帅. 典型固沙植物种子萌发和幼苗生长对土壤水分的响应[J]. 干旱区研究, 2024, 41(5): 830-842. |
| [6] | 胡广录, 刘鹏, 李嘉楠, 陶虎, 周成乾. 黑河中游绿洲边缘三种景观类型土壤水分动态特征及影响因素[J]. 干旱区研究, 2024, 41(4): 550-565. |
| [7] | 张华, 押海廷, 徐存刚. 兰州市南北两山土壤水分遥感反演及植被需水量估算[J]. 干旱区研究, 2024, 41(4): 566-580. |
| [8] | 宋达成, 马全林, 刘世权, 魏林源, 吴昊, 段晓峰, 郭树江. 民勤黏土沙障-人工梭梭林物种多样性及土壤水分变化特征[J]. 干旱区研究, 2024, 41(4): 618-628. |
| [9] | 马龙龙, 易志远, 魏采用, 周峰, 李明涛, 乔成龙, 杜灵通. 宁夏盐池县生态系统水分利用效率时空特征及其影响因素[J]. 干旱区研究, 2024, 41(4): 650-660. |
| [10] | 徐铭璟, 冯强, 吕萌. 生态系统服务权衡及其影响因素——以黄河流域山西段为例[J]. 干旱区研究, 2024, 41(3): 467-479. |
| [11] | 孙玮婕, 乔斌, 于红妍, 赵彤, 陈奇. 基于活力-组织力-恢复力的黑河源区高寒湿地景观生态健康评估[J]. 干旱区研究, 2024, 41(2): 301-313. |
| [12] | 李嘉楠, 周成乾, 胡广录, 杨鹏华, 李昊辰. 荒漠-绿洲过渡带典型固沙植物根区土壤大孔隙特征及影响因素[J]. 干旱区研究, 2024, 41(12): 2015-2026. |
| [13] | 解玉彩, 刘浩, 赵丰年, 张磊, 赵鑫, 师卓, 王兴鹏. 灌溉水矿化度和钠吸附比互作对膜下滴灌棉花生长及产量的影响[J]. 干旱区研究, 2024, 41(12): 2071-2082. |
| [14] | 沙涛, 张玲卫, 刘会良, 张岚, 卢妤婷, 周鑫宇, 文晓虎, 张元明. 降水、氮沉降对尖喙牻牛儿苗隔代生理可塑性的影响[J]. 干旱区研究, 2024, 41(10): 1753-1766. |
| [15] | 张玲雪, 李小锋, 屈军, 马美瑜, 张建斌, 李耀明. 水盐胁迫对四翅滨藜生理生长特性的影响[J]. 干旱区研究, 2024, 41(10): 1767-1777. |
|
||