干旱区研究 ›› 2024, Vol. 41 ›› Issue (2): 301-313.doi: 10.13866/j.azr.2024.02.13 cstr: 32277.14.AZR.20240213
孙玮婕1,2(), 乔斌1,2,3(
), 于红妍4,5, 赵彤1,2, 陈奇1,2
收稿日期:
2023-03-08
修回日期:
2023-11-01
出版日期:
2024-02-15
发布日期:
2024-03-11
作者简介:
孙玮婕(1995-),女,硕士,助理工程师,主要从事生态遥感监测研究. E-mail: Jer_2007@126.com
基金资助:
SUN Weijie1,2(), QIAO Bin1,2,3(
), YU Hongyan4,5, ZHAO Tong1,2, CHEN Qi1,2
Received:
2023-03-08
Revised:
2023-11-01
Published:
2024-02-15
Online:
2024-03-11
摘要:
黑河源国家湿地公园作为典型高寒河源湿地,其生态系统健康状况是衡量高寒湿地当前及未来发展状态的重要依据。本研究基于土地利用数据,引入景观生态脆弱性指数,从生态系统活力、组织力、恢复力和生态系统服务价值4个方面构建高寒湿地生态健康综合评价体系,定量评估2014—2021年黑河源区生态健康时空变化特征。结果表明:(1)草地是黑河源区最主要的土地利用类型,高、中和低覆盖度草地呈镶嵌式分布;其次是未利用地,主要分布在河流两岸及西北部。(2)黑河源区以低脆弱区和较低脆弱区面积为主,整体景观生态脆弱性较低。(3)黑河源区以健康和中等健康为主,整体生态环境健康水平较高。综合来看,黑河源区2014—2021年生态系统较为健康,今后黑河源区应该以生态功能为主,兼顾牧业生产,保证生态系统朝着“生态和谐”的健康方向发展。
孙玮婕, 乔斌, 于红妍, 赵彤, 陈奇. 基于活力-组织力-恢复力的黑河源区高寒湿地景观生态健康评估[J]. 干旱区研究, 2024, 41(2): 301-313.
SUN Weijie, QIAO Bin, YU Hongyan, ZHAO Tong, CHEN Qi. Ecological health assessment of the alpine wetland landscape in the Heihe River source area based on vigor, organization, and resilience[J]. Arid Zone Research, 2024, 41(2): 301-313.
表1
景观生态指数公式及意义"
景观格局指数 | 公式 | 参数意义 |
---|---|---|
景观适应度( | ||
景观干扰度( | ||
景观易损度( | 专家咨询法并归一化获得 | 表示不同生态系统的易损性,生态系统的脆弱性与其在景观自然演替过程中所处的阶段有关。通常,未利用地取值为7,林地、草地取值为5,建设用地、水域取值为1 |
景观敏感度( | ||
景观格局脆弱性( | ||
景观功能脆弱性( | ||
景观生态脆弱性( |
表2
黑河源区生态系统健康评价指标体系"
目标层 | 准则层 | 指标层 | 指标计算方法 | 参数意义 | 指标类型 |
---|---|---|---|---|---|
黑河源区生态系统健康评价 | 活力 | 归一化植被指数(NDVI) | 积极 | ||
组织力 | 植被覆盖度(FVC) | 积极 | |||
景观生态脆弱性 (LEV) | 根据 | - | 消极 | ||
平均斑块面积 (MPS) | 积极 | ||||
恢复力 | 海拔(DEM) | - | - | 消极 | |
生态系统弹性度 (E) | 积极 | ||||
生态系统服务价值 | 生态系统服务 价值(EVS) | 利用价值当量法计算不同土地类型单位面积的生态系统服务价值 | - | 积极 |
[1] | 乔斌, 王乃昂, 王义鹏, 等. 山地-绿洲“共轭型”生态牧场理念源起、概念框架与发展模式——以祁连山牧区为例[J]. 生态学报, 2023, 43(21): 1-16. |
[Qiao Bin, Wang Nai’ang, Wang Yipeng, et al. Concept origin conceptual framework and development mode of Mountain-Oasis “Conjugate” Ecological Pasture: Empirical demonstration in Qilian Mountains[J]. Acta Ecologica Sinica, 2023, 43(21): 1-16.]
doi: 10.1016/j.chnaes.2021.07.007 |
|
[2] | 邢宇. 青藏高原32年湿地对气候变化的空间响应[J]. 国土资源遥感, 2015, 27(3): 99-107. |
[Xing Yu. Spatial responses of wetland change to climate in 32 years in Qinghai-Tibet Plateau[J]. Remote Sensing for Land and Resources, 2015, 27(3): 99-107.] | |
[3] |
Gina Holguin, Patricia Gonzalez-Zamorano, Luz E De-Bashan, et al. Mangrove health in an arid environment encroached by urban development: A case study[J]. Science of the Total Environment, 2006, 363(1-3): 260-274.
pmid: 16112715 |
[4] |
燕守广, 李辉, 李海东, 等. 基于土地利用与景观格局的生态保护红线生态系统健康评价方法——以南京市为例[J]. 自然资源学报, 2020, 35(5): 1109-1118.
doi: 10.31497/zrzyxb.20200508 |
[Yan Shouguang, Li Hui, Li Haidong, et al. Ecosystem health assessment method of eco-redline based on land use and landscape pattern in Nanjing[J]. Journal of Natural Resources, 2020, 35(5): 1109-1118.]
doi: 10.31497/zrzyxb.20200508 |
|
[5] | 张月琪, 张志, 江鎞倩, 等. 城市红树林生态系统健康评价与管理对策——以粤港澳大湾区为例[J]. 中国环境科学, 2022, 42(5): 2352-2369. |
[Zhang Yueqi, Zhang Zhi, Jiang Biqian, et al. Ecosystem health assessment and management strategies of urban mangrove: A case study of Guangdong-Hong Kong-Macao Greater Bay Area[J]. China Environmental Science, 2022, 42(5): 2352-2369.] | |
[6] |
Rapport David J. What constitutes ecosystem health[J]. Perspectives in Biology and Medicine, 1989, 33: 120-132.
doi: 10.1353/pbm.1990.0004 |
[7] | 刘焱序, 彭建, 汪安, 等. 生态系统健康研究进展[J]. 生态学报, 2015, 35(18): 5920-5930. |
[Liu Yanxu, Peng Jian, Wang An, et al. New research progress and trends in ecosystem health[J]. Acta Ecologica Sinica, 2015, 35(18): 5920-5930.] | |
[8] | 周静, 万荣荣. 湿地生态系统健康评价方法研究进展[J]. 生态科学, 2018, 37(6): 209-216. |
[Zhou Jing, Wan Rongrong. Advances in methods of wetland ecosystem health evaluation[J]. Ecological Science, 2018, 37(6): 209-216.] | |
[9] |
Whitall David, Bricker Suzanne, Ferreira Joao. Assessment of eutrophication in estuaries: Pressure-state-response and nitrogen source apportionment[J]. Environ Manage, 2007, 40(4): 678-690.
pmid: 17661131 |
[10] | 李雪宁, 徐先英, 郑桂恒, 等. 石羊河下游人工梭梭林健康评价体系构建及应用研究[J]. 干旱区研究, 2022, 39(3): 872-882. |
[Li Xuening, Xu Xianying, Zheng Guiheng, et al. A health evaluation of a Haloxylon ammodendron plantation in the Shiyang river lower reaches[J]. Arid Zone Research, 2022, 39(3): 872-882.] | |
[11] |
Robert Costanza, Ralph d’Arge, Rudolf de Groot, et al. The value of the world’s ecosystem services and natural capital[J]. Nature, 1997, 387(15): 253-260.
doi: 10.1038/387253a0 |
[12] |
Datzberger Simone. Why education is not helping the poor. Findings from Uganda[J]. World Development, 2018, 110: 124-139.
doi: 10.1016/j.worlddev.2018.05.022 |
[13] |
Rapport David J, Singh Ashbindu. An eco-health based framework for status of environment reporting[J]. Ecological Indicators, 2006, 6(2): 409-428.
doi: 10.1016/j.ecolind.2005.05.003 |
[14] | 张藜. 基于景观生态理论的三江源湿地生态健康评价[D]. 西安: 陕西科技大学, 2016. |
[Zhang Li. The Ecological Health Based on the Theory of Landscape Ecology of the Three Rivers Wetlands[D]. Xi’an: Shanxi University of Science and Technology, 2016.] | |
[15] | 朱捷缘, 卢慧婷, 王慧芳, 等. 汶川地震重灾区恢复期生态系统健康评价[J]. 生态学报, 2018, 38(24): 9001-9011. |
[Zhu Jieyuan, Lu Huiting, Wang Huifang, et al. Ecosystem health assessment of the Wenchuan earthquake hard-hit disaster areas during the recovery period[J]. Acta Ecologica Sinica, 2018, 38(24): 9001-9011.] | |
[16] |
Yan Yan, Zhao Chunli, Wang Chenxing, et al. Ecosystem health assessment of the Liao River Basin upstream region based on ecosystem services[J]. Acta Ecologica Sinica, 2016, 36(4): 294-300.
doi: 10.1016/j.chnaes.2016.06.005 |
[17] | 周启刚, 彭春花, 刘栩位, 等. 基于VOR模型的三峡库区消落带2010—2020年生态系统健康评价[J]. 水土保持研究, 2022, 29(5): 310-318. |
[Zhou Qigang, Peng Chunhua, Liu Xuwei, et al. Ecosystem health assessment of water level fluctuating zone in Three Gorges Reservoir Area based on VOR model[J]. Research of Soil and Water Conservation, 2022, 29(5): 310-318.] | |
[18] |
Bao Zhongcong, Eshetu Shifaw, Deng Chengbo, et al. Remote sensing-based assessment of ecosystem health by optimizing vigor-organization-resilience model: A case study in Fuzhou City, China[J]. Ecological Informatics, 2022, 72: 101889.
doi: 10.1016/j.ecoinf.2022.101889 |
[19] | 乔斌, 曹晓云, 孙玮婕, 等. 基于生态系统服务价值和景观生态风险的生态分区识别与优化策略——以祁连山国家公园青海片区为例[J]. 生态学报, 2023, 43(3): 986-1004. |
[Qiao Bin, Cao Xiaoyun, Sun Weijie, et al. Ecological identification and optimization strategies based on ecosystem service value and landscape ecological risk: Taking Qinghai area of Qilian Mountain National Park as an example[J]. Acta Ecologica Sinica, 2023, 43(3): 986-1004.] | |
[20] | 刘梦, 周爱国, 补建伟, 等. 黑河源多金属矿区地质环境承载力评价[J]. 中国矿业, 2018, 27(9): 114-120. |
[Liu Meng, Zhou Aiguo, Bu Jianwei, et al. Geo-environmental carrying capacity assessment of polymetallic mining area in the headwater regions of Heihe river[J]. China Mining Magazine, 2018, 27(9): 114-120.] | |
[21] |
Breiman Leo. Random forest[J]. Machine Learning, 2001, 45(1): 5-32.
doi: 10.1023/A:1010933404324 |
[22] | 杨露. 祁连山地区生态环境质量时空变化及其驱动机制分析[D]. 兰州: 兰州大学, 2021. |
[Yang Lu. Study on the Spatio-Temporal Change of Eco-Environmental Quality and Its Driving Mechanism in Qilian Mountains[D]. Lanzhou: Lanzhou University, 2021.] | |
[23] | 张行, 陈海, 史琴琴, 等. 陕西省景观生态脆弱性时空演变及其影响因素[J]. 干旱区研究, 2020, 37(2): 496-505. |
[Zhang Hang, Chen Hai, Shi Qinqin, et al. Spatiotemporal evolution and driving factors of landscape ecological vulnerability in Shaanxi Province[J]. Arid Zone Research, 2020, 37(2): 496-505.] | |
[24] | 张晓瑶, 虞虎, 张潇, 等. 基于多源数据的三江源国家公园土地生态安全综合评价[J]. 生态学报, 2022, 42(14): 5665-5676. |
[Zhang Xiaoyao, Yu Hu, Zhang Xiao, et al. Comprehensive evaluation of land ecological security in the Sanjiangyuan National Park based on multi-source data[J]. Acta Ecologica Sinica, 2022, 42(14): 5665-5676.] | |
[25] | 李鹏, 俞国燕. 多指标综合评价方法研究综述[J]. 机电产品开发与创新, 2009, 22(4): 24-28. |
[Li Peng, Yu Guoyan. Survey on the multi-index comprehensive evaluation method[J]. Development & Innovation of Machinery & Electrical Products, 2009, 22(4): 24-28.] | |
[26] |
付建新, 曹广超, 郭文炯. 1980—2018年祁连山南坡土地利用变化及其驱动力[J]. 应用生态学报, 2020, 31(8): 2699-2709.
doi: 10.13287/j.1001-9332.202008.017 |
[Fu Jianxin, Cao Guangchao, Guo Wenjiong. Land use change and its driving force on the southern slope of Qilian Mountains from 1980 to 2018[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2699-2709.]
doi: 10.13287/j.1001-9332.202008.017 |
|
[27] | 宋长春. 湿地生态系统对气候变化的响应[J]. 湿地科学, 2003, 1(2): 122-127. |
[Song Changchun. Influence of global climate change on wetlands[J]. Wetland Science, 2003, 1(2): 122-127.] | |
[28] | 叶伟林, 黄钰涵, 周自强, 等. 祁连山地区近60年气温时空变化特征[J]. 科学技术与工程, 2022, 22(4): 1344-1353. |
[Ye Weilin, Huang Yuhan, Zhou Ziqiang, et al. Temporaland spatial variations of air temperature in the Qilian Mountains during the past 60 years[J]. Science Technology and Engineering, 2022, 22(4): 1344-1353.] | |
[29] | 徐亚男, 刘学录, 李晓丹, 等. 祁连山东段生态敏感性对景观动态变化的响应[J]. 生态科学, 2019, 38(5): 160-167. |
[Xu Yanan, Liu Xuelu, Li Xiaodan, et al. Response of ecological sensitivity to landscape dynamic change in the eastern section of Qilian Mountain[J]. Ecological Science, 2019, 38(5): 160-167.] | |
[30] | 刘宽梅. 祁连山自然保护区景观格局变化及其稳定性研究[D]. 兰州: 兰州大学, 2021. |
[Liu Kuanmei. Study on the Change and Stability of Landscape Pattern in Qilian Mountain Nature Reserve[D]. Lanzhou: Lanzhou University, 2021.] | |
[31] | 刘佳茹. 2005—2018年祁连山生态脆弱性遥感评价研究[D]. 兰州: 西北师范大学, 2021. |
[Liu Jiaru. Remote Sensing Evaluation of Ecological Vulnerability in Qilian Mountains from 2005 to 2018[D]. Lanzhou: Northwest Normal University, 2021.] | |
[32] | 张应丰. 祁连山地湿地生态质量评价[J]. 林业调查规划, 2015, 40(4): 69-72. |
[Zhang Yingfeng. Evaluation on wetland eco-environmental quality of Qilian Mountains in Qinghai Province[J]. Forest Inventory and Planning, 2015, 40(4): 69-72.] | |
[33] | 卢成保, 侯留飞. 青海省祁连县草地退化原因分析及治理对策[J]. 今日畜牧兽医, 2018, 34(2): 62. |
[Lu Chengbao, Hou Liufei. Causes of grassland degradation and countermeasures in Qilian County, Qinghai Province[J]. Today Animal Husbandry and Veterinary Medicine, 2018, 34(2): 62.] | |
[34] | 杨荣荣, 曹广超, 曹生奎, 等. 2000—2018年黑河源区草地NPP时空变化及影响因素分析[J]. 草原与草坪, 2020, 40(2): 79-86. |
[Yang Rongrong, Cao Guangchao, Cao Shengkui, et al. Temporal and spatial variation of grassland NPP and its influencing factors in Heihe source area from 2000 to 2018[J]. Grassland and Turf, 2020, 40(2): 79-86.] | |
[35] | 马恒利. 近40年黑河流域景观生态风险演变及其与地形梯度的关系[D]. 兰州: 兰州交通大学, 2021. |
[Ma Hengli. Evolution of Landscape Ecological Risk and Its Relationship with Terrain Gradient in Heihe River Basin in Recent 40 Years[D]. Lanzhou: Lanzhou Jiaotong University, 2021.] |
[1] | 郝潘潘, 刘志有. 新疆绿洲土地利用隐性形态与土地生态安全协调特征——以伊犁河谷为例[J]. 干旱区研究, 2024, 41(9): 1605-1614. |
[2] | 高鹏程, 岳艳妮, 鄢继选, 王世杰, 别强. 甘南藏族自治州土地利用与生态风险时空演变及驱动因素[J]. 干旱区研究, 2024, 41(7): 1140-1152. |
[3] | 吴朝巧, 林菲, 牛俊杰, 耿甜伟. 山西中部城市群生态系统服务对土地利用格局变化的响应[J]. 干旱区研究, 2024, 41(7): 1153-1166. |
[4] | 李冰洁, 范志韬, 曲芷程, 姚顺予, 宿夏姝, 刘东伟, 王立新. 基于InVEST-PLUS模型的黄河流域内蒙古段生态系统碳储量评价及预测[J]. 干旱区研究, 2024, 41(7): 1217-1227. |
[5] | 张顺鑫, 吴子豪, 闫庆武, 李桂娥, 牟守国. 基于PLUS-InVEST模型的天山北坡生态系统碳储量时空变化与预测[J]. 干旱区研究, 2024, 41(7): 1228-1237. |
[6] | 杨锁华, 李丽, 马江德, 郭文霞. “三生空间”视角下陕西省1990—2020年土地利用转型及梯度效应[J]. 干旱区研究, 2024, 41(7): 1249-1258. |
[7] | 周建伟, 罗君, 马雪洋. 拉萨河流域土地利用与生态系统服务价值时空演变及驱动因素[J]. 干旱区研究, 2024, 41(6): 1021-1031. |
[8] | 董彭蓓, 任宗萍, 李鹏, 王凯博, 贺国凯, 王璞. 土地利用变化下宁夏生态系统服务权衡协同关系研究[J]. 干旱区研究, 2024, 41(6): 1032-1044. |
[9] | 姚小晨, 高凡, 韩方红, 何兵. 2000—2020年阿克苏河流域土地利用强度变化及其对蒸散发的影响[J]. 干旱区研究, 2024, 41(6): 951-963. |
[10] | 王军, 柴志福, 马浩艳, 赵志锰, 邬佳宾, 付卫平. 基于支持向量机的蓄水工程土地利用分类与动态变化[J]. 干旱区研究, 2024, 41(4): 581-589. |
[11] | 李文秀, 燕振刚. 基于地理探测器的甘肃农牧交错带土地利用时空演化及其驱动机制[J]. 干旱区研究, 2024, 41(4): 590-602. |
[12] | 司琪, 樊浩然, 董文明, 刘新平. 新疆叶尔羌河流域景观生态风险评价及预测[J]. 干旱区研究, 2024, 41(4): 684-696. |
[13] | 李佳珂, 邵战林. 基于PLUS和InVEST模型的乌鲁木齐市碳储量时空演变与预测[J]. 干旱区研究, 2024, 41(3): 499-508. |
[14] | 王洋, 冯卓亚, 许丽, 高文信. 塔里木河流域生境质量与土地利用变化响应及驱动力[J]. 干旱区研究, 2024, 41(12): 2132-2142. |
[15] | 李娜, 信会男, 赖宁, 李永福, 吕彩霞, 耿庆龙, 段婧婧, 陈署晃. 不同土地利用方式对农田土壤有机碳组分及土壤微生物量碳的影响[J]. 干旱区研究, 2024, 41(10): 1789-1796. |
|