干旱区研究 ›› 2021, Vol. 38 ›› Issue (6): 1497-1505.doi: 10.13866/j.azr.2021.06.01 cstr: 32277.14.AZR.20210601
• 水资源及其利用 • 下一篇
收稿日期:
2020-12-24
修回日期:
2021-03-01
出版日期:
2021-11-15
发布日期:
2021-11-29
作者简介:
田华(1973-),女,博士,副教授,主要从事区域水循环与演化研究. E-mail: 基金资助:
TIAN Hua(),XIN Tuo,LI Jinfang,YANG Jiayi,XIE Zufeng
Received:
2020-12-24
Revised:
2021-03-01
Published:
2021-11-15
Online:
2021-11-29
摘要:
水化学与同位素特征对不同水体水文过程具有重要的指示作用。本文基于2018年乌伦古河流域不同水体水化学与稳定同位素测试数据,综合运用数理统计、Gibbs图解、离子比值、Piper三线图等方法,查明了乌伦古河流域水体水化学与同位素特征,探讨了水化学形成机制、演化趋势与水体转化关系。结果表明:河水受岩石风化、蒸发浓缩与混合作用影响,水化学类型以HCO3·SO4-Ca·Na为主;湖水受蒸发浓缩作用控制,水化学类型为SO4·Cl-Na型;地下水在岩石风化、蒸发浓缩、阳离子交换的共同作用下,潜水水化学类型为HCO3·SO4-Ca·Na与SO4·HCO3-Na·Ca型,承压水为Cl·SO4-Na型;各水体Piper图表明,地表水与潜水进一步向Cl·SO4-Na型演化;各水体氢氧稳定同位素富集程度表现为乌伦古湖>吉力湖>河水>潜水>承压水;各水体氢氧稳定同位素值均位于当地雨水线(δD=6.49δ18O-8.63)两侧,表明蒸发与降水是影响水体同位素特征的主要因素;受地质地貌、地层结构影响,潜水与河水水力联系紧密而与承压水联系微弱,区内以潜水向河水补给为主,承压水与潜水存在局部水力联系。
田华,辛拓,李金芳,杨嘉懿,谢祖锋. 乌伦古河流域水体水化学与同位素特征及指示意义[J]. 干旱区研究, 2021, 38(6): 1497-1505.
TIAN Hua,XIN Tuo,LI Jinfang,YANG Jiayi,XIE Zufeng. Characteristics and indication of hydrochemistry and environmental isotopes of different water sources in the Ulungur River basin[J]. Arid Zone Research, 2021, 38(6): 1497-1505.
表1
地表水与地下水水化学特征统计"
水样 类型 | 统计值 | K+ | Na+ | Ca2+ | Mg2+ | Cl- | SO42- | HCO3- | TDS | pH | |
---|---|---|---|---|---|---|---|---|---|---|---|
/(mg·L-1) | /(mg·L-1) | /(mg·L-1) | /(mg·L-1) | /(mg·L-1) | /(mg·L-1) | /(mg·L-1) | /(mg·L-1) | ||||
地 表 水 | 乌伦古河 (R) | 平均值 | 3.8 | 56.5 | 63.3 | 12.7 | 31.3 | 125.5 | 147.4 | 362.5 | 7.7 |
主导离子 | 阴离子:SO42-、HCO3-;阳离子:Na+、Ca2+ | ||||||||||
水化学类型 | HCO3·SO4-Ca·Na,SO4·HCO3-Ca·Na | ||||||||||
乌伦古湖 (WH) | 平均值 | 47.6 | 609.1 | 61.9 | 68.5 | 419.8 | 756.2 | 417.5 | 2196.3 | 8.4 | |
主导离子 | 阴离子:SO42-、Cl-;阳离子:Na+ | ||||||||||
水化学类型 | SO4·Cl-Na | ||||||||||
吉力湖 (JH) | 平均值 | 18.7 | 265.9 | 69.5 | 33.4 | 182.1 | 357.3 | 254.2 | 1761.1 | 7.7 | |
主导离子 | 阴离子:SO42-、Cl-;阳离子:Na+ | ||||||||||
水化学类型 | SO4·Cl-Na | ||||||||||
地 下 水 | 潜水 (Q) | 平均值 | 6.9 | 201.2 | 118.2 | 37.1 | 152.4 | 407.8 | 302.2 | 1091.6 | 7.3 |
主导离子 | 阴离子:SO42-、HCO3-;阳离子:Na+、Ca2+ | ||||||||||
水化学类型 | HCO3·SO4-Ca·Na,SO4·HCO3-Na·Ca | ||||||||||
承压水 (C) | 平均值 | 3.5 | 380.5 | 69.5 | 64.2 | 379.3 | 550.9 | 187.6 | 1581.5 | 7.5 | |
主导离子 | 阴离子:Cl-、SO42-;阳离子:Na+ | ||||||||||
水化学类型 | Cl·SO4-Na |
表2
地表水与地下水同位素特征统计结果"
统计值 | δD/‰ | δ18O/‰ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
潜水 | 承压水 | 河水 | 吉力湖 | 乌伦古湖 | 潜水 | 承压水 | 河水 | 吉力湖 | 乌伦古湖 | ||
最小值 | -109 | -137 | -99 | -67 | -51 | -13.8 | -15.4 | -13.4 | -7.1 | -4.6 | |
最大值 | -97 | -108 | -85 | -62 | -48 | -12.1 | -14.4 | -10.2 | -6.2 | -3.9 | |
平均值 | -104 | -120 | -95 | -65 | -50 | -13.3 | -14.8 | -12.2 | -6.8 | -4.3 | |
标准差 | 4.1 | 12.8 | 3.3 | 2.2 | 1.1 | 0.8 | 11.9 | 1.3 | 0.4 | 1.3 | |
变异系数 | 0.03 | 0.11 | 0.03 | 0.03 | 0.02 | 0.06 | 1.19 | 0.11 | 0.06 | 0.31 |
[1] |
Yong Xiao, Jingli Shao, Yali Cui, et al. Groundwater circulation and hydrogeochemical evolution in Nomhon of Qaidam Basin, Northwest China[J]. Journal of Earth System Science, 2017, 126(2):1-16.
doi: 10.1007/s12040-016-0788-5 |
[2] | Ye Chuanyong, Zheng Mianping, Wang Zhiming, et al. Hydrochemistry of the Gasikule Salt Lake, Western Qaidam Basin of China[J]. Acta Geologica Sinica, 2014, 88(1):170-172. |
[3] | 王磊, 董少刚, 王雪欣, 等. 内蒙古托克托县“神泉”水文地球化学特征及成因研究[J]. 干旱区研究, 2020, 37(5):1140-1147. |
[ Wang Lei, Dong Shaogang, Wang Xuexin, et al. Hydrogeochemical characteristics and origin of “Shenquan” in Tuoketuo County, Inner Mongolia[J]. Arid Zone Research, 2020, 37(5):1140-1147. ] | |
[4] |
Anuar Sefie, Ahmad Zaharin Aris, Mohammad Firuz Ramli, et al. Hydrogeochemistry and groundwater quality assessment of the multilayered aquifer in Lower Kelantan Basin, Kelantan, Malaysia[J]. Environmental Earth Sciences, 2018, 77(10):1-15.
doi: 10.1007/s12665-017-7169-5 |
[5] | 刘明亮, 何曈, 吴启帆, 等. 雄安新区地热水化学特征及其指示意义[J]. 地球科学, 2020, 45(6):2221-2231. |
[ Liu Mingling, He Tong, Wu Qifan, et al. Hydrogeochemistry of geothermal waters from Xiong’an New Area and its[J]. Earth Science, 2020, 45(6):2221-2231. ] | |
[6] |
He Jianhua, Ma Jinzhu, Zhang Peng, et al. Groundwater recharge environments and hydrogeochemical evolution in the Jiuquan Basin, Northwest China[J]. Applied Geochemistry, 2012, 27(4):866-878.
doi: 10.1016/j.apgeochem.2012.01.014 |
[7] | 王红太, 周金龙, 曾妍妍, 等. 新疆喀什噶尔河流域平原区地下水TDS分布及其成因[J]. 干旱区研究, 2020, 37(4):830-838. |
[ Wang Hongtai, Zhou Jinlong, Zeng Yanyan. Distribution characteristics and causes of groundwater total dissolved solids in the plain of the Kashgar River Basin, Xinjiang[J]. Arid Zone Research, 2020, 37(4):830-838. ] | |
[8] | 周嘉欣, 丁永建, 曾国雄, 等. 疏勒河上游地表水水化学主离子特征及其控制因素[J]. 环境科学, 2014, 35(9):3315-3324. |
[ Zhou Jiaxin, Ding Yongjian, Zeng Guowei, et al. Major ion chemistry of surface water in the upper reach of Shule River Basin and the possible control[J]. Environmental Science, 2014, 35(9):3315-3324. ] | |
[9] |
Qian Hui, Wu Jianhua, Zhou Yahong, et al. Stable oxygen and hydrogen isotopes as indicators of lake water recharge and evaporation in the lakes of the Yinchuan Plain[J]. Hydrological Processes, 2014, 28(10):3554-3562.
doi: 10.1002/hyp.v28.10 |
[10] | 菅晶, 贾德彬, 郭少峰, 等. 2014年浑善达克沙地黄柳生长季水分来源同位素示踪研究[J]. 干旱区研究, 2017, 34(2):350-355. |
[ Jian Jing, Jia Debin, Guo Shaofeng, et al. Water sources in growing season of Salix gordejevii in the otindag sandy land traced by stable disotope in 2014[J]. Arid Zone Research, 2017, 34(2):350-355. ] | |
[11] |
Liao Fu, Wang Guangcai, Shi Zheming, et al. Estimation of groundwater discharge and associated chemical fluxes into Poyang Lake, China: Approaches using stable isotopes (δD and δ18O) and radon[J]. Hydrogeology Journal, 2018, 26(5):1625-1638.
doi: 10.1007/s10040-018-1793-3 |
[12] |
Ma Yandong, Zhao Jingbo, Qi Zhou, et al. Identification of runoff type and an assessment of water balance for the megadune area of the Badain Jaran Desert[J]. Environmental Earth Sciences, 2017, 76(12):424-439.
doi: 10.1007/s12665-017-6715-5 |
[13] | 胡玥, 刘传琨, 卢粤晗, 等. 环境同位素在黑河流域水循环研究中的应用[J]. 地球科学进展, 2014, 29(10):1158-1166. |
[ Hu Yue, Liu Chuankun, Lu Yuehan, et al. Application of environmental isotopes in the study of water cycle in the Heihe River Basin[J]. Progress in Earth Science, 2014, 29(10):1158-1166. ] | |
[14] |
Martinez Jorge L, Raiber Matthias, Cox Malcolm E. Assessment of groundwater-surface water interaction using long-term hydrochemical data and isotope hydrology: Headwaters of the Condamine River, Southeast Queensland, Australia[J]. Science of the Total Environment, 2015, 536:499-516.
doi: 10.1016/j.scitotenv.2015.07.031 |
[15] | 张兵, 宋献方, 张应华, 等. 第二松花江流域地表水与地下水相互关系[J]. 水科学进展, 2014, 25(3):336-347. |
[ Zhang Bing, Song Xianfang, Zhang Yinghua, et al. The relationship between surface water and groundwater in the second Songhua River Basin[J]. Progress in Water Science, 2014, 25(3):336-347. ] | |
[16] |
严钦尚, 夏训诚. 新疆额尔齐斯河与乌伦古河流域地貌发育[J]. 地理学报, 1962, 28(4):257-274.
doi: 10.11821/xb196204001 |
[ Yan Qinshang, Xia Xuncheng. Landform development in the Irtysh and Ulungur River Basin in Xinjiang[J]. Acta Geographica Sinica, 1962, 28(4):257-274. ]
doi: 10.11821/xb196204001 |
|
[17] | 潘思东, 张旺生, 周国华, 等. 新疆阿尔泰山的掀斜隆升及其构造制约[J]. 地质科技情报, 2007, 26(2):19-24. |
[ Pan Sidong, Zhang Wangsheng, Zhou Guohua, et al. Effect of tilted uplift and strike-slip shear-structure of Altai Mountains on Erqisi and Wulungu River-Basin environment[J]. Bulletin of Geological Science and Technology, 2007, 26(2):19-24. ] | |
[18] | 努尔兰·哈再孜. 乌伦古河流域水文特征[J]. 干旱区研究, 2014, 31(5):798-802. |
[ Nurlan Hazazi. Hydrological characteristics in the Ulungur River Basin[J]. Arid Zone Research, 2014, 31(5):798-802. ] | |
[19] | 努尔兰·哈再孜, 沈永平, 马哈提·穆拉提别克. 气候变化对阿尔泰山乌伦古河流域径流过程的影响[J]. 冰川冻土, 2014, 36(3):699-705. |
[ Nurlan Hazazi, Shen Yongping, Mahat Mulatibiek. Impacts of climate change on hydrological processes in the Ulungur River watershed, Altay Mountains[J]. Journal of Glaciology and Geocryology, 2014, 36(3):699-705. ] | |
[20] | 薛嵩嵩, 高凡, 何兵, 等. 近30年乌伦古河流域土地利用与生态系统服务价值变化研究[J]. 水土保持通报, 2019, 39(6):223-229, 322. |
[ Xue Songsong, Gao Fan, He Bing, et al. Variation of land use and ecosystem service value in Ulungur River basin in past 30 years[J]. Bulletin of Soil and Water Conservation, 2019, 39(6):223-229, 322. ] | |
[21] | 田华, 辛拓, 邓韬, 等. 乌伦古河流潜水水化学特征与成因分析[J]. 干旱区研究, 2020, 37(6):1371-1377. |
[ Tian Hua, Xin Tuo, Deng Tao, et al. Hydrochemical characteristics and formation of phreatic water in the Ulungur River watershed[J]. Arid Zone Research, 2020, 37(6):1371-1377. ] | |
[22] |
Craig H. Isotopic variation in meteoric waters[J]. Science, 1961, 133(3456):1702-1703.
doi: 10.1126/science.133.3465.1702 |
[23] | 郑淑蕙, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报, 1983, 28(13):801-806. |
[ Zheng Shuhui, Hou Fagao, Ni Baoling. Study on stable isotopes of hydrogen and oxygen in atmospheric precipitation in China[J]. Chinese Science Bulletin, 1983, 28(13):801-806. ] | |
[24] |
Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962):1088-1090.
pmid: 17777828 |
[25] | 魏兴, 周金龙, 乃尉华, 等. 新疆喀什三角洲地下水化学特征及演化规律[J]. 环境科学, 2019, 40(9):4042-4051. |
[ Wei Xing, Zhou Jinlong, Nai Weihua, et al. Hydrochemical characteristics and evolution of groundwater in the Kashgar Delta Area in Xinjiang[J]. Environmental Science, 2019, 40(9):4042-4051. ] | |
[26] | 王珺瑜, 王家乐, 靳孟贵. 济南泉域岩溶水水化学特征及其成因[J]. 地球科学, 2017, 42(5):821-831. |
[ Wang Junyu, Wang Jiale, Jin Menggui. Hydrochemical characteristics and formation causes of Karst water in Jinan spring catchment[J]. Earth Science, 2017, 42(5):821-831. ] | |
[27] | 唐金平, 张强, 胡漾, 等. 巴中北部岩溶山区地下水化学特征及演化分析[J]. 环境科学, 2019, 40(10):4543-4552. |
[ Tang Jinping, Zhang Qiang, Hu Yang. Hydrochemical characteristics of Karst groundwater in the mountains of northern Bazhong City, China[J]. Environmental Science, 2019, 40(10):4543-4552. ] | |
[28] | 王瑞久. 三线图解及其水文地质解释[J]. 工程勘察, 1983, 11(6):6-11. |
[ Wang Ruijiu. Piper diagram and its hydrogeological interpretation[J]. Geotechnical Investigation and Surveying, 1983, 11(6):6-11. ] |
[1] | 李小等, 常亮, 段瑞, 王倩, 张群慧, 杨炳超. 和田河流域水化学特征与地下水补给来源分析[J]. 干旱区研究, 2024, 41(6): 917-927. |
[2] | 李晗薇, 姚俊强, 容韬, 张天洋, 高雅洁. 塔什库尔干河流域河谷大气降水同位素特征与水汽输送路径[J]. 干旱区研究, 2024, 41(3): 399-410. |
[3] | 王平顺, 苗新岳, 燕亚平, 董生旺, 董少刚. 内蒙古伊敏盆地地下水水化学特征及其成因[J]. 干旱区研究, 2024, 41(3): 411-420. |
[4] | 李平平, 盖楠, 王晓丹, 杨俊仓. 敦煌月牙泉域地下水系统水文地球化学特征分析[J]. 干旱区研究, 2024, 41(2): 240-249. |
[5] | 邵杰, 杨欣杰, 陈喜庆, 滕超, 易锦俊, 董美玲, 张泽琛, 曹军, 朱宁, 肖登, 孙思远, 吕菲. 西藏易贡湖流域地表水水化学特征及其控制因素[J]. 干旱区研究, 2024, 41(2): 250-260. |
[6] | 郑钰, 孙英, 周金龙, 李如跃. 新疆额尔齐斯河流域平原区地下水水化学特征及高氟水成因机制[J]. 干旱区研究, 2024, 41(12): 2056-2070. |
[7] | 范明彦, 田丽慧, 周海. 微地形对高寒固沙植物水分利用特征的影响[J]. 干旱区研究, 2024, 41(1): 60-70. |
[8] | 王娜娜,韩磊,柳利利,彭苓,周鹏,马云蕾,马军. 银川平原夏半年不同等级降雨水汽输送机制[J]. 干旱区研究, 2023, 40(9): 1404-1413. |
[9] | 康文辉,周殷竹,孙英,周金龙,曹月婷,鲁涵,涂治. 新疆玛纳斯河流域地下水砷氟分布及共富集成因[J]. 干旱区研究, 2023, 40(9): 1425-1437. |
[10] | 庄淏然, 冯克鹏, 许德浩. 蒸散分离的玉米水分利用效率变化及影响因素[J]. 干旱区研究, 2023, 40(7): 1117-1130. |
[11] | 田胜川, 赵善超, 郑新军, 王玉刚, 李彦. 天山不同海拔雪岭云杉生长季水分来源[J]. 干旱区研究, 2023, 40(3): 436-444. |
[12] | 李红梅, 巴贺贾依娜尔·铁木尔别克, 常顺利, 古丽哈娜提·波拉提别克, 张毓涛, 李吉枚. MixSIAR和IsoSource模型对比分析天山北坡不同灌木的夏季水分来源[J]. 干旱区研究, 2023, 40(3): 445-455. |
[13] | 钟晓菲, 张明军, 张宇, 王家鑫, 刘泽琛, 谷来磊. 基于稳定同位素的兰州市南北两山土壤水入渗模式[J]. 干旱区研究, 2023, 40(11): 1744-1753. |
[14] | 高福翔, 徐东升, 周金龙, 周龙. 新疆博尔塔拉河中游地表水与地下水转化关系及原因[J]. 干旱区研究, 2023, 40(11): 1754-1764. |
[15] | 蒋磊,赵毅,张鹏伟,何亮,摆翔. 基于氢氧稳定同位素特征的潜水蒸发影响程度研究[J]. 干旱区研究, 2022, 39(6): 1793-1800. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 243
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 507
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|