干旱区研究 ›› 2024, Vol. 41 ›› Issue (1): 60-70.doi: 10.13866/j.azr.2024.01.06 cstr: 32277.14.AZR.20240106
收稿日期:
2023-07-11
修回日期:
2023-09-13
出版日期:
2024-01-15
发布日期:
2024-01-24
作者简介:
范明彦(1999-),女,硕士研究生,研究方向为沙地生态水文. E-mail: 基金资助:
FAN Mingyan1(),TIAN Lihui1(
),ZHOU Hai2
Received:
2023-07-11
Revised:
2023-09-13
Published:
2024-01-15
Online:
2024-01-24
摘要:
水是植物生存最主要的限制因子,对沙区植物水分利用的研究已成为沙地生态保护和植被恢复的关键。本文以青海湖湖东沙地3种典型固沙植物——樟子松、小叶杨、沙棘为研究对象,基于氢氧稳定同位素技术(δ18O和δD),结合IsoSource模型,对微地形影响下的各潜在水源(不同层次的土壤水)及植物主要水分来源进行分析。研究结果表明:(1)土壤含水量具有微地形差异,表现在迎风坡低地土壤含水量高于沙丘顶部和迎风坡中部,且9月土壤含水量处在最高值。(2)木质部水的δ18O值在不同微地形条件下具有树种差异性,樟子松在迎风坡低地的δ18O值最小,而沙棘和小叶杨在迎风坡中部的δ18O值最小。(3)不同植物的主要水分来源具有较为明显的季节差异,6月樟子松和沙棘在不同微地形条件下均以深层土壤水为主要水分来源,而小叶杨在沙丘顶部主要利用深层土壤水,在迎风坡中部和低地对中层土壤水的利用较大,但随着降水量的增加,9月各树种转而主要利用浅层和中层土壤水。总而言之,高寒沙地固沙植物的水分利用模式受微地形条件的影响,且不同物种对降水表现出不同程度的响应。
范明彦, 田丽慧, 周海. 微地形对高寒固沙植物水分利用特征的影响[J]. 干旱区研究, 2024, 41(1): 60-70.
FAN Mingyan, TIAN Lihui, ZHOU Hai. Effects of micro-topography on water use characteristics of alpine sand-fixing plants[J]. Arid Zone Research, 2024, 41(1): 60-70.
表1
研究样地植被群落特征(10 m×10 m样方内)"
样地部位 | 物种 | 株高/cm | 东西长/cm | 南北长/cm | 覆盖度/% | 密度/株 |
---|---|---|---|---|---|---|
沙丘顶部 | 樟子松 | 57.30±16.89Ba | 35.30±7.54Ba | 36.40±10.82Ba | 0.13±0.06Ba | 19 |
沙棘 | 82.20±30.20Ba | 81.10±25.44ABa | 84.70±25.91ABa | 0.73±0.40ABa | 63 | |
小叶杨 | 195.50±145.13Aa | 120.00±104.73Aa | 118.70±105.31Aa | 2.41±3.51Aa | 11 | |
迎风坡中部 | 樟子松 | 50.60±13.88Ba | 26.60±4.45Bb | 30.80±5.94Ba | 0.08±0.02Ba | 10 |
沙棘 | 73.40±27.02Ba | 86.70±40.87Aa | 89.10±41.15Aa | 0.91±0.72Aa | 48 | |
小叶杨 | 164.60±46.82Aa | 107.30±66.17Aa | 120.50±82.79Aa | 1.78±2.79Aa | 10 | |
迎风坡低地 | 樟子松 | 58.50±8.42Ba | 32.30±7.94Bab | 35.50±9.50Ba | 0.11±0.05Ba | 22 |
沙棘 | 81.70±22.98Ba | 69.80±21.46Ba | 78.70±13.22ABa | 0.57±0.24Ba | 71 | |
小叶杨 | 198.90±105.28Aa | 125.40±77.10Aa | 132.60±84.74Aa | 2.21±2.41Aa | 14 |
[1] | 冯起, 程国栋. 我国沙地水分分布状况及其意义[J]. 土壤学报, 1999, 36(2): 225-236. |
[Feng Qi, Cheng Guodong. Moisture distribution and movement in sandy lands of Chian[J]. Acta Pedologica Sinica, 1999, 36(2): 225-236.] | |
[2] |
Dai J J, Zhang X P, Luo Z D, et al. Variation of the stable isotopes of water in the soil-plant-atmosphere continuum of a Cinnamomum camphora woodland in the East Asian monsoon region[J]. Journal of Hydrology, 2020, 589: 125199.
doi: 10.1016/j.jhydrol.2020.125199 |
[3] |
周海, 赵文智, 何志斌. 两种荒漠生境条件下泡泡刺水分来源及其对降水的响应[J]. 应用生态学报, 2017, 28(7): 2083-2092.
doi: 10.13287/j.1001-9332.201707.021 |
[Zhou Hai, Zhao Wenzhi, He Zhibin. Water sources of Nitraria sibirica and response to precipitation in two desert habitats[J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2083-2092.]
doi: 10.13287/j.1001-9332.201707.021 |
|
[4] |
Yang B, Wen X F, Sun X M. Seasonal variations in depth of water uptake for a subtropical coniferous plantation subjected to drought in an East Asian monsoon region[J]. Agricultural and Forest Meteorology, 2015, 201: 218-228.
doi: 10.1016/j.agrformet.2014.11.020 |
[5] | Ehleringer J R, Dawson T E. Water uptake by plants: Perspectives from stable isotope composition[J]. Plant, Cell & Environment, 1992, 15(9): 1073-1082. |
[6] |
Ward D, Wiegand K, Getzin S. Walter’s two-layer hypothesis revisited: back to the roots![J]. Oecologia, 2013, 172(3), 617-630.
doi: 10.1007/s00442-012-2538-y |
[7] |
Volkmann T H M, Haberer K, Gessler A, et al. High-resolution isotope measurements resolve rapid ecohydrological dynamics at the soil-plant interface[J]. The New phytologist, 2016, 210(3): 839-849.
doi: 10.1111/nph.2016.210.issue-3 |
[8] |
Zhang C C, Li X Y, Wu H W, et al. Differences in water-use strategies along an aridity gradient between two coexisting desert shrubs (Reaumuria soongorica and Nitraria sphaerocarpa): Isotopic approaches with physiological evidence[J]. Plant Soil, 2017, 419(1/2), 169-187.
doi: 10.1007/s11104-017-3332-8 |
[9] | 张世才, 王慧娟, 张定海, 等. 腾格里沙漠东南缘3种沙丘4种微地貌上土壤水分与地形-植被因子之间的关系[J]. 甘肃农业大学学报, 2023, 58(3): 160-168, 179. |
[Zhang Shicai, Wang Huijuan, Zhang Dinghai, et al. Relationship between soil moisture and topography-vegetation factors on three types of sand dunes and four types of microgeomorphology in the southeastern margin of Tengger Desert in northern China[J]. Journal of Gansu Agricultural University, 2023, 58(3): 160-168, 179.] | |
[10] | 朱玉伟, 陈启民, 刘茂秀, 等. 古尔班通古特沙漠南缘沙丘水分的时空分布特征[J]. 草业科学, 2008, 25(12): 6-11. |
[Zhu Yuwei, Chen Qimin, Liu Maoxiu, et al. Spatiotemporal distribution of moisture content in sand dunes of the unirrigated forestation along the southern marginal zone of Gurbantunggut Desert[J]. Pratacultural Science, 2008, 25(12): 6-11.] | |
[11] | 田丽慧, 汪海娇, 张登山, 等. 高寒沙地典型固沙植物在沙丘不同地貌部位的水分利用特征[J]. 生态学报, 2021, 41(15): 6215-6226. |
[Tian Lihui, Wang Haijiao, Zhang Dengshan, et al. Water use patterns for a typical afforested shrub among topographic positions in an alpine desert of Qinghai-Tibet Plateau using stable isotopes tracers[J]. Acta Ecologica Sinica, 2021, 41(15): 6215-6226.] | |
[12] | 吴汪洋, 张登山, 田丽慧, 等. 青海湖湖东沙地固沙植物的土壤改良作用[J]. 东华理工大学学报(自然科学版), 2022, 45(6): 607-614. |
[Wu Wangyang, Zhang Dengshan, Tian Lihui, et al. Soil amelioration benefit of sand-binding vegetation in east-shore sandy land of Qinghai Lake[J]. Journal of East China University of Technology(Natural Science), 2022, 45(6): 607-614.] | |
[13] | 吴汪洋, 张登山, 田丽慧, 等. 近10年青海湖东沙地人工植被群落特征[J]. 生态学报, 2019, 39(6): 2109-2121. |
[Wu Wangyang, Zhang Dengshan, Tian Lihui, et al. Features of artificial plant communities from the east sand region of the Qinghai Lake over the last 10 years[J]. Acta Ecologica Sinica, 2019, 39(6): 2109-2121.] | |
[14] | 汪海娇, 田丽慧, 张登山, 等. 青海湖东沙地不同植被恢复措施下土壤水分变化特征[J]. 干旱区研究, 2021, 38(1): 76-86. |
[Wang Haijiao, Tian Lihui, Zhang Dengshan, et al. Variation of soil moisture content in vegetation restoration area of sandy land at east shore of Qinghai Lake[J]. Arid Zone Research, 2021, 38(1): 76-86.] | |
[15] |
石明明, 王晓敏, 陈奇, 等. 高寒草地干湿生态系统土壤水分及入渗对降水的响应[J]. 草业学报, 2021, 30(12): 49-58.
doi: 10.11686/cyxb2020436 |
[Shi Mingming, Wang Xiaomin, Chen Qi, et al. Responses of soil moisture to precipitation and infiltration in dry and wet alpine grassland ecosystems[J]. Acta Prataculturae Sinica, 2021, 30(12): 49-58.]
doi: 10.11686/cyxb2020436 |
|
[16] | 吴汪洋, 张登山, 田丽慧, 等. 青海湖沙地人工治理沙丘的风速廓线变化特征[J]. 水土保持研究, 2013, 20(6): 162-167. |
[Wu Wangyang, Zhang Dengshan, Tian Lihui, et al. Variable characteristics of wind profile of the artificial sand dune in sandy land around the Qinghai Lake[J]. Research of Soil and Water Conservation, 2013, 20(6): 162-167.] | |
[17] | 郑永飞, 陈江峰. 稳定同位素地球化学[M]. 北京: 科学出版社, 2000. |
[Zheng Yongfei, Chen Jiangfeng. Stable Isotope Geochemistry[M]. Beijing: Science Press, 2000.] | |
[18] |
Schwinning S S, Sala O E, Loik M E, et al. Thresholds, memory, and seasonality: Understanding pulse dynamics in arid/semi-arid ecosystems[J]. Oecologia, 2004, 141(2): 191-193.
pmid: 15300489 |
[19] |
Banes C J, Allison G B. Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen[J]. Journal of Hydrology, 1988, 100(1-3): 143-176.
doi: 10.1016/0022-1694(88)90184-9 |
[20] |
Ran M L, Hao T, Guang Y, et al. Source water apportionment using stable isotopes for typical riparian plants along the Manas River in Xinjiang, Northwest China[J]. Water, 2023, 15(5): 927.
doi: 10.3390/w15050927 |
[21] |
周海, 郑新军, 唐立松, 等. 准噶尔盆地东南缘多枝柽柳、白刺和红砂水分来源的异同[J]. 植物生态学报, 2013, 37(7): 665-673.
doi: 10.3724/SP.J.1258.2013.00069 |
[Zhou Hai, Zheng Xinjun, Tang Lisong, et al. Differences and similarities between water sources of Tamarix ramosissima, Nitraria sibirica and Reaumuria soongorica in the southeastern Junggar Basin[J]. Chinese Journal of Plant Ecology, 2013, 37(7): 665-673.]
doi: 10.3724/SP.J.1258.2013.00069 |
|
[22] |
Ohte N, Koba K, Yoshikawa K, et al. Water utilization of natural and planted trees in the Semiarid Desert of Inner Mongolia, China[J]. Ecological Applications, 2003, 13(2): 337-351.
doi: 10.1890/1051-0761(2003)013[0337:WUONAP]2.0.CO;2 |
[23] |
Dai Y, Zheng X J, Tang L S, et al. Stable oxygen isotopes reveal distinct water use patterns of two Haloxylon species in the Gurbantonggut Desert[J]. Plant Soil, 2015, 389(1-2), 73-87.
doi: 10.1007/s11104-014-2342-z |
[24] | Li C J, Li Y, Ma J, et al. Spatial heterogeneity of soil chemical properties between Haloxylon persicum and Haloxylon ammodendron populations[J]. Journal of Arid Land, 2010, 2(4): 257-265. |
[25] | 黄俊, 吴普特, 赵西宁. 坡面生物调控措施对土壤水分入渗的影响[J]. 农业工程学报, 2010, 26(10): 29-37. |
[Huang Jun, Wu Pute, Zhao Xining. Impact of slope biological regulated measures on soil water infiltration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(10): 29-37.] | |
[26] |
Kidron G J. Runoff generation and sediment yield on homogeneous dune slopes: Scale effect and implications for analysis[J]. Earth Surface Processes and Landforms, 2011, 36(13): 1809-1824.
doi: 10.1002/esp.v36.13 |
[27] |
Wu Y S, Hasi E, Wu X, et al. Characteristics of surface runoff in a sandy area in southern Mu Us sandy land[J]. Chinese Science Bulletin, 2012, 57(2-3): 270-275.
doi: 10.1007/s11434-011-4728-0 |
[28] |
Liu W J, Li J T, Lu H J, et al. Vertical patterns of soil water acquisition by non-native rubber trees (Hevea brasiliensis) in Xishuangbanna, Southwest China[J]. Ecohydrology, 2014, 7(4), 1234-1244.
doi: 10.1002/eco.v7.4 |
[29] |
Qian J, Zheng H, Wang P F, et al. Assessing the ecohydrological separation hypothesis and seasonal variations in water use by Ginkgo biloba L. in a subtropical riparian area[J]. Journal of Hydrology, 2017, 553: 486-500.
doi: 10.1016/j.jhydrol.2017.08.021 |
[30] |
Zimmermann U, Münnich K O, Roether W, et al. Tracers determine movement of soil moisture and evapotranspiration[J]. Science, 1966, 152(3720): 346-347.
pmid: 17775158 |
[31] |
Zhao Y, Wang L. Plant Water use strategy in response to spatial and temporal variation in precipitation patterns in China: A stable isotope analysis[J]. Forests, 2018, 9(3): 123.
doi: 10.3390/f9030123 |
[32] |
Zhao L J, Xie C, Liu X H, et al. Water sources of major plant species along a strong climatic gradient in the inland Heihe River Basin[J]. Plant Soil, 2020, 455(1-2), 439-466.
doi: 10.1007/s11104-020-04639-5 |
[33] |
Sun S J, Meng P, Zhang J S, et al. Variation in soil water uptake and its effect on plant water status in Juglans regia L. during dry and wet seasons[J]. Tree Physiology, 2011, 31(12): 1378-1389.
doi: 10.1093/treephys/tpr116 |
[34] |
Wu H, Zhao G, Li X Y, et al. Identifying water sources used by alpine riparian plants in a restoration zone on the Qinghai-Tibet Plateau: Evidence from stable isotopes[J]. Science of the Total Environment, 2019, 697: 134092.
doi: 10.1016/j.scitotenv.2019.134092 |
[35] |
Schenk H J, Jackson R B. Mapping the global distribution of deep roots in relation to climate and soil characteristics[J]. Geoderma, 2005, 126(1-2): 129-140.
doi: 10.1016/j.geoderma.2004.11.018 |
[1] | 李晗薇, 姚俊强, 容韬, 张天洋, 高雅洁. 塔什库尔干河流域河谷大气降水同位素特征与水汽输送路径[J]. 干旱区研究, 2024, 41(3): 399-410. |
[2] | 王娜娜,韩磊,柳利利,彭苓,周鹏,马云蕾,马军. 银川平原夏半年不同等级降雨水汽输送机制[J]. 干旱区研究, 2023, 40(9): 1404-1413. |
[3] | 庄淏然, 冯克鹏, 许德浩. 蒸散分离的玉米水分利用效率变化及影响因素[J]. 干旱区研究, 2023, 40(7): 1117-1130. |
[4] | 李红梅, 巴贺贾依娜尔·铁木尔别克, 常顺利, 古丽哈娜提·波拉提别克, 张毓涛, 李吉枚. MixSIAR和IsoSource模型对比分析天山北坡不同灌木的夏季水分来源[J]. 干旱区研究, 2023, 40(3): 445-455. |
[5] | 田胜川, 赵善超, 郑新军, 王玉刚, 李彦. 天山不同海拔雪岭云杉生长季水分来源[J]. 干旱区研究, 2023, 40(3): 436-444. |
[6] | 钟晓菲, 张明军, 张宇, 王家鑫, 刘泽琛, 谷来磊. 基于稳定同位素的兰州市南北两山土壤水入渗模式[J]. 干旱区研究, 2023, 40(11): 1744-1753. |
[7] | 蒋磊,赵毅,张鹏伟,何亮,摆翔. 基于氢氧稳定同位素特征的潜水蒸发影响程度研究[J]. 干旱区研究, 2022, 39(6): 1793-1800. |
[8] | 雷世军,王圣杰,朱小凡,张明军. 基于蒸发皿实验的大气水汽氢氧稳定同位素模拟[J]. 干旱区研究, 2022, 39(1): 21-29. |
[9] | 田华,辛拓,李金芳,杨嘉懿,谢祖锋. 乌伦古河流域水体水化学与同位素特征及指示意义[J]. 干旱区研究, 2021, 38(6): 1497-1505. |
[10] | 曾康康,杨余辉,胡义成,冯先成. 喀什河流域降水同位素特征及水汽来源分析[J]. 干旱区研究, 2021, 38(5): 1263-1273. |
[11] | 郭鑫,李文宝,孙标. 氢氧稳定同位素对达里湖水体蒸发与补给来源的指示作用[J]. 干旱区研究, 2021, 38(4): 930-938. |
[12] | 张建文, 李鹏, 高海东, 杨倩楠, 刘展. 覆沙坡面微地形变化与侵蚀产沙的响应关系[J]. 干旱区研究, 2020, 37(3): 757-. |
[13] | 张立恒, 李清雪, 王学全, 贾志清, 李少华. 高寒沙区中间锦鸡儿人工林细根动态及其周转 [J]. 干旱区研究, 2020, 37(1): 212-219. |
[14] | 孙从建, 张子宇, 陈伟, 李伟, 陈若霞. 亚洲中部高山降水稳定同位素空间分布特征 [J]. 干旱区研究, 2019, 36(1): 19-28. |
[15] | 吴汪洋,张登山,田丽慧,张明远,周鑫. 高寒沙地植物的沙堆形态特征及其成因分析[J]. 干旱区研究, 2018, 35(3): 713-721. |
|