干旱区研究 ›› 2021, Vol. 38 ›› Issue (2): 438-449.doi: 10.13866/j.azr.2021.02.15
收稿日期:
2020-05-30
修回日期:
2020-08-11
出版日期:
2021-03-15
发布日期:
2021-04-25
通讯作者:
张丙昌
作者简介:
李彬(1995-),女,在读硕士,研究方向为生物结皮与蓝藻多样性. E-mail:基金资助:
LI Bin1(),WU Zhifang1,TAO Ye2,ZHOU Xiaobing2,ZHANG Bingchang1()
Received:
2020-05-30
Revised:
2020-08-11
Online:
2021-03-15
Published:
2021-04-25
Contact:
Bingchang ZHANG
摘要:
选择古尔班通古特沙漠的北部(一号点)、中部(二号点)、南部(三号点)3个不同样点的裸沙和藻结皮、地衣结皮与苔藓结皮3种生物结皮类型,对比研究了草本植物多样性的差异性及其主要环境影响因素。结果表明:(1) 不同生物结皮类型的土壤理化性质有明显差异,土壤有机质、全氮、全磷、全钾含量以及黏粒、粉粒和细沙的含量随生物结皮演替显著上升,而中沙和粗沙的含量呈显著下降趋势,在沙漠不同区域呈现明显的空间异质性,二号样点中裸沙和藻结皮的养分含量和pH明显低于一号点和三号点。(2) 草本植物的物种丰富度和Shannon-Wiener指数随生物结皮发育呈明显上升趋势,草本植物的物种组成、群落结构在不同类型生物结皮和沙漠不同区域均具有显著差异。(3) 在土壤理化特征中,有机质、速效P和全K含量,以及pH和粉粒含量是影响草本植物分布的关键因子。(4) 不同类型生物结皮之间的微地形和种类组成差异、种子生物学特性以及生物结皮在不同尺度下的土壤环境异质性共同影响草本植物在生物结皮中的物种组成和丰度,最终导致草本植物群落结构在生物结皮中的演替变化。
李彬,武志芳,陶冶,周晓兵,张丙昌. 古尔班通古特沙漠不同类型生物结皮对草本植物多样性影响[J]. 干旱区研究, 2021, 38(2): 438-449.
LI Bin,WU Zhifang,TAO Ye,ZHOU Xiaobing,ZHANG Bingchang. Effects of biological soil crust type on herbaceous diversity in the Gurbantunggut Desert[J]. Arid Zone Research, 2021, 38(2): 438-449.
表1
生物结皮不同演替阶段的土壤理化特性(平均值±标准差)"
理化特性 | 结皮层(0~2 cm) | 结皮下层(2~5 cm) | |||||||
---|---|---|---|---|---|---|---|---|---|
裸沙 | 藻结皮 | 地衣结皮 | 苔藓结皮 | 裸沙 | 藻结皮 | 地衣结皮 | 苔藓结皮 | ||
有机质/(g·kg-1) | 2.88±2.29Bb | 3.91±0.55Bb | 4.30±0.37Bb | 6.62±0.71Aa | 2.06±0.45Bb | 2.12±0.50Bb | 2.42±0.26Bb | 3.88±0.61Aa | |
全氮/(g·kg-1) | 0.12±0.03Cc | 0.21±0.03Bb | 0.23±0.03Bb | 0.38± 0.01Aa | 0.06±0.01Cd | 0.12±0.02Bc | 0.16±0.04Bb | 0.21±0.03Aa | |
硝态氮/(mg·kg-1) | 18.44±7.42Cc | 38. 65±6.22ABb | 35.52±2.27Bb | 50.64±10.62Aa | 2.18±0.57Cc | 3.92±0.49BCb | 4.67±1.18Bb | 7.35±1.59Aa | |
铵态氮/(mg·kg-1) | 14.63±1.38Bb | 29.04±13.36ABb | 26.18±4.74Bb | 49.69±17.47Aa | 12.18±1.75a | 12.53±0.81a | 12.51±0.75a | 13.55±1.17a | |
全磷/(g·kg-1) | 0.39±0.12a | 0.42±0.05a | 0.43±0.01a | 0.45±0.02a | 0.35±0.02Bc | 0.40±0.05ABb | 0.39±0.02ABb | 0.44±0.01Aa | |
全钾/(g·kg-1) | 21.60±0.74b | 22.40±0.69a | 22.52±0.41a | 22.59±0.30a | 21.07±0.21b | 21.24±0.38ab | 21.40±0.40ab | 21.70±0.51a | |
速效磷/(mg·kg-1) | 2.74±0.52Bb | 3.14±0.30Bb | 3.09±0.38Bb | 4.41±0.55Aa | 3.15±0.92Bb | 3.27±0.60Bb | 3.41±0.65Bb | 5.14±0.90Aa | |
速效钾/(mg·kg-1) | 92.2±75.91Bb | 115.8±27.26ABb | 135.20±18.95ABab | 189.00±5.61Aa | 104.20±82.67a | 115.80±22.47a | 122.00±12.31a | 151.80±4.55a | |
总盐/(mg·g-1) | 0.11±0.01Bc | 0.11±0.01Bc | 0.14±0.01Ab | 0.17±0.02Aa | 0.11±0.01Bbc | 0.11±0.01Bc | 0.12±0.01Bb | 0.15±0.02Aa | |
pH | 8.05±0.42ab | 8.32±0.06a | 8.36±0.08a | 7.93±0.21b | 7.57±0.16Bc | 7.84±0.09Aa | 7.73±0.07ABab | 7.66±0.09ABbc | |
黏粒(<2μm)/% | 0.70±0.38Bc | 0.93±0.23Bbc | 1.35±0.14ABb | 1.96±0.67Aa | 0.59±0.11Cc | 0.77±0.08BCc | 1.05±0.11Bb | 1.66±0.34Aa | |
粉粒(2~20 μm)/% | 2.84±0.62Bb | 3.20±0.92Bb | 3.36±0.77ABb | 5.42±1.93Aa | 2.29±0.39Bc | 2.49±0.44Bbc | 2.95±0.62Bb | 4.54±0.35Aa | |
细沙(20~200 μm)/% | 66.03±5.07Bc | 69.36±4.18ABbc | 74.83±1.89Aa | 71.78±1.50ABab | 64.07±1.91Bc | 67.08±1.90Bb | 73.63±2.09Aa | 71.57±0.82Aa | |
中沙(0.2~0.5 mm)/% | 21.83±2.23Aa | 19.66±2.82ABa | 16.09±1.67Bb | 16.26±1.22Bb | 20.37±0.53Aa | 18.38±0.45Bb | 15.33±0.72Cc | 15.40±0.39Cc | |
粗沙(>0.5 mm)/% | 8.64±3.68Aa | 6.70±1.84ABab | 4.44±1.02Bb | 4.67±1.26ABb | 13.11±2.10Aa | 12.25±2.02Aa | 7.35±1.34Bb | 7.50±0.45Bb |
表2
不同类型生物结皮中草本植物的物种组成和重要值(平均值±标准差)"
物种名 | 一号点 | 二号点 | 三号点 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
裸沙 | 藻结皮 | 地衣结皮 | 苔藓结皮 | 裸沙 | 藻结皮 | 地衣结皮 | 苔藓结皮 | 裸沙 | 藻结皮 | 地衣结皮 | 苔藓结皮 | |||
尖喙牻牛儿苗 Erodium oxyrrhynchum | 6.43±9.14 | 29.31±20.55 | 27.83±5.93 | 20.85±8.03 | 29.27±11.28 | 28.78±3.52 | 31.05±2.73 | 13.49±10.69 | 2.30±3.22 | 18.96±8.81 | 24.46±4.81 | 26.37±10.48 | ||
囊果苔草Carex physodes | 19.59±18.83 | 24.11±15.30 | 12.95±9.14 | 24.11±5.27 | 0 | 43.00±16.87 | 43.63±10.52 | 18.83±3.68 | 30.23±27.73 | 17.63±16.53 | 13.45±14.77 | 5.28±7.28 | ||
硬萼软紫草 Arnebia decumbens | 0 | 1.28±2.86 | 2.88±6.45 | 0 | 0 | 0 | 0 | 0 | 0 | 0.52±1.16 | 1.80±2.47 | 0 | ||
假狼紫草Nonea caspica | 0 | 4.11±5.79 | 4.00±8.95 | 0 | 7.38±16.51 | 0 | 0 | 0.42±0.93 | 2.87±6.42 | 0.89±2.00 | 3.63±5.04 | 0 | ||
狭果鹤虱 Lappula semiglabra | 12.06±12.38 | 0 | 0 | 0 | 21.99±19.52 | 0 | 0 | 0 | 14.61±12.16 | 0 | 0 | 0 | ||
萹蓄Polygonum aviculare | 3.20±7.15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
刺沙蓬Salsola ruthenica | 1.13±1.56 | 8.02±5.60 | 21.98±8.10 | 0.98±2.19 | 1.01±2.25 | 0 | 0 | 0 | 0 | 1.75±3.91 | 0 | 0 | ||
角果藜 Ceratocarpus arenarius | 0 | 3.24±4.70 | 0.41±0.91 | 0 | 0 | 1.72±3.86 | 0 | 0.23±0.51 | 0 | 0 | 0.41±0.92 | 1.70±3.81 | ||
对节刺Horaninovia ulicina | 1.24±1.72 | 5.72±5.35 | 3.58±6.45 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.39±1.96 | 0 | ||
卷果涩芥 Malcolmia scorpioides | 3.10±4.52 | 0.83±1.85 | 7.26±6.95 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
条叶庭荠Alyssum linifolium | 15.23±19.24 | 1.95±4.36 | 6.06±5.96 | 0 | 3.73±8.33 | 7.16±4.11 | 0 | 3.17±7.09 | 9.46±14.64 | 22.87±12.81 | 20.99±17.33 | 17.90±7.32 | ||
弯曲四齿芥 Tetracme recurvata | 0 | 0.44±0.98 | 1.86±4.16 | 0 | 1.43±3.20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
丝叶芥Leptaleum filifolium | 0 | 0 | 2.24±5.00 | 2.50±3.45 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
沙葱Allium mongolicum | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5.29±11.83 | ||
顶冰花Gagea lutea | 10.40±23.26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
琉苞菊Hyalea pulchella | 0 | 0 | 1.96±4.39 | 0 | 26.50±25.54 | 15.72±11.77 | 6.79±7.14 | 4.89±6.69 | 12.08±17.54 | 21.07±9.27 | 8.94±5.46 | 8.85±6.67 | ||
小甘菊Cancrinia discoidea | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.82±6.30 | 1.31±2.94 | 0 | ||
疏齿千里光 Senecio subdentatus | 18.22±16.78 | 2.54±5.69 | 1.05±2.36 | 0 | 0 | 0 | 0 | 0 | 8.37±8.44 | 0 | 0.96±2.14 | 0 | ||
白茎绢蒿 Seriphidium terraealbae | 0 | 0 | 0 | 0 | 2.42±5.40 | 0 | 0 | 0 | 10.31±9.50 | 0 | 0 | 0 | ||
土大戟 Euphorbia turczaninowii | 0 | 0 | 0 | 0 | 2.11±4.72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
小花荆芥Nepeta micrantlm | 0 | 16.75±11.86 | 2.42±3.39 | 1.49±1.49 | 2.10±4.70 | 0 | 0 | 0 | 0 | 0 | 0 | 3.57±2.84 | ||
簇花芹Soranthus meyeri | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8.73±19.53 | 0 | 0 | 0 | ||
齿稃草Schismus arabicus | 0.66±0.90 | 0.57±1.26 | 3.51±5.77 | 1.36±1.88 | 2.06±4.60 | 3.61±4.08 | 9.21±6.94 | 2.98±2.84 | 0 | 0.40±0.89 | 0 | 6.16±7.13 | ||
东方旱麦Eremopyrum orientale | 4.32±6.30 | 0 | 0 | 0 | 0 | 0 | 2.06±2.83 | 0 | 0 | 0 | 1.64±3.66 | 1.06±2.36 |
表3
古尔班通古特沙漠生物结皮中植物群落结构差异性的PerMANOVA分析"
Ⅰ-裸沙 | Ⅰ-藻结皮 | Ⅰ-地衣结皮皮 | Ⅰ-苔藓结皮皮 | Ⅱ-裸沙 | Ⅱ藻结皮 | Ⅱ-地衣结皮皮 | Ⅱ-苔藓结皮皮 | Ⅲ-裸沙 | Ⅲ-藻结皮 | Ⅲ-地衣结皮皮 | Ⅲ-苔藓结皮 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ⅰ-裸沙 | ||||||||||||
Ⅰ-藻结皮 | 0.1615 | |||||||||||
Ⅰ-地衣结皮 | 0.0079 | 0.0401 | ||||||||||
Ⅰ-苔藓结皮 | 0.0082 | 0.0158 | 0.0644 | |||||||||
Ⅱ-裸沙 | 0.0506 | 0.0233 | 0.0074 | 0.0063 | ||||||||
Ⅱ-藻结皮 | 0.0078 | 0.0078 | 0.0089 | 0.0071 | 0.0073 | |||||||
Ⅱ-地衣结皮 | 0.0066 | 0.0074 | 0.0081 | 0.007 | 0.0082 | 0.9076 | ||||||
Ⅱ-苔藓结皮 | 0.0411 | 0.1073 | 0.1388 | 0.3991 | 0.0393 | 0.0079 | 0.0096 | |||||
Ⅲ-裸沙 | 0.4605 | 0.0157 | 0.0084 | 0.0074 | 0.0177 | 0.0082 | 0.0081 | 0.0066 | ||||
Ⅲ-藻结皮 | 0.0571 | 0.0265 | 0.007 | 0.0083 | 0.0211 | 0.0173 | 0.0079 | 0.0377 | 0.0076 | |||
Ⅲ-地衣结皮 | 0.0073 | 0.0166 | 0.0079 | 0.0416 | 0.0086 | 0.0242 | 0.023 | 0.1734 | 0.0087 | 0.2164 | ||
Ⅲ-苔藓结皮 | 0.0068 | 0.0076 | 0.0173 | 0.031 | 0.0169 | 0.0081 | 0.0074 | 0.1502 | 0.0094 | 0.0543 | 0.8252 |
表4
植物群落与理化性质的Mantel test分析"
理化性质 | r | P |
---|---|---|
有机质/(g·kg-1) | -0.143 | 0.038* |
全氮/(g·kg-1) | -0.103 | 0.100 |
硝态氮/(mg·kg-1) | 0.004 | 0.939 |
铵态氮/(mg·kg-1) | -0.021 | 0.801 |
全磷/(g·kg-1) | -0.103 | 0.100 |
全钾/(g·kg-1) | -0.141 | 0.047* |
速效磷/(mg·kg-1) | 0.283 | 0.001** |
速效钾/(mg·kg-1) | -0.115 | 0.089 |
总盐/(mg·g-1) | -0.002 | 0.979 |
pH | 0.099 | 0.021* |
黏粒 (<2 μm)/% | 0.241 | 0.007** |
粉粒 (2~20μm )/% | 0.251 | 0.009** |
细沙 (20~200 μm)/% | -0.084 | 0.271 |
中沙 (0.2~0.5 mm)/% | 0.084 | 0.231 |
粗沙 (>0.5 mm)/% | -0.063 | 0.463 |
[1] | Eldridge D J, Greene R S B. Microbiotic soil crusts: A review of their roles in soil and ecological processes in the rangelands of Australia[J]. Australian Journal of Soil Research, 1994,32(3):389-415. |
[2] | Belnap J, Lange O L. Biological Soil Crusts: Structure, Function, and Management[M]. Berlin, Heideberg, New York, Hong Kong, London, Milan, Paris, Tokyo: Springer, 2003. |
[3] | 李新荣, 张元明, 赵允格. 生物土壤结皮研究: 进展、前沿与展望[J]. 地球科学进展, 2009,24(1):11-24. |
[ Li Xinrong, Zhang Yuanming, Zhao Yunge. A study of biological soil crusts: Recent development, trend and prospect[J]. Advances in Earth Science, 2009,24(1):11-24. ] | |
[4] | Bowker M A. Biological soil crust rehabilitation in theory and practice: An underexploited opportunity[J]. Restoration Ecology, 2007,15(1):13-23. |
[5] | 刘永定, 胡春香, 张文军. 荒漠蓝藻环境生物学与生物土壤结皮固沙[M]. 北京: 科学出版社, 2013. |
[ Liu Yongding, Hu Chunxiang, Zhang Wenjun. Environmental Biology of Desert Cyanobacteria and Biological Soil Crusting and Sand Fixation[M]. Beijing: Science Press, 2013. ] | |
[6] | Lan S B, Wu L, Zhang D L. Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China)[J]. Environmental Earth Sciences, 2012,65(1):77-88. |
[7] | Zhang B C, Zhang Y M, Zhao J C. Microalgal species variation at different successional stages in biological soil crusts of the Gurbantunggut Desert, Northwestern China[J]. Biology and Fertility of Soils, 2009,45(5):539-547. |
[8] | Zhang Y M. The microstructure and formation of biological soil crust in their early developmental stage[J]. Chinese Science Bulletin, 2005,50:117-121. |
[9] | Hu C X, Liu Y D. Primary succession of algal community structure in desert soil[J]. Acta Botanica Sinica, 2003,45(8):917-924. |
[10] | Zhang B C, Zhang Y Q, Li X Z. Successional changes of fungal communities along the biocrust development stages[J]. Biology and Fertility of Soils, 2018,54:285-294. |
[11] | Zhang Y M, Chen J, Wang L. The spatial distribution patterns of biological soil crusts in the Gurbantunggut Desert, Northern Xinjiang, China[J]. Journal of Arid Environments, 2007,68(4):599-610. |
[12] | Zhang B C, Zhou X B, Zhang Y M. Responses of microbial activities and soil physical-chemical properties to the successional process of biological soil crusts in the Gurbantunggut Desert, Xinjiang[J]. Journal of Arid Land, 2015,7(1):101-109. |
[13] | Li X R, Jia X H, Long L Q. Effects of biological soil crusts on seed bank, germination and establishment of two annual plant species in the Tengger Desert (N China)[J]. Plant and Soil, 2005,277(1-2):375-385. |
[14] | Su Y G, Li X R, Zheng J G. The effect of biological soil crusts of different successional stages and conditions on the germination of seeds of three desert plants[J]. Journal of Arid Environments, 2009,73(10):931-936. |
[15] | Belnap J, Prasse R, Harper K T. Influence of biological soil crusts on soil environments and vascular plants[C]// Belnap J, L OL. Biological Soil Crusts: Structure, Function, and Management. New York: Springer, Berlin Heidelberg, 2003: 281-300. |
[16] | 苏延桂, 李新荣, 陈应武, 等. 生物土壤结皮对荒漠土壤种子库和种子萌发的影响[J]. 生态学报, 2007,27(3):938-946. |
[ Su Yangui, Li Xinrong, Chen Yingwu, et al. Effects of biological soil crusts on soil seed bank and seed germination of desert plants in North China[J]. Acta Ecologica Sinica, 2007,27(3):938-946. ] | |
[17] | 郭轶瑞, 赵哈林, 左小安, 等. 科尔沁沙地生物结皮的土壤种子库特征[J]. 水土保持学报, 2007,21(6):187-191. |
[ Guo Yirui, Zhao Halin, Zuo Xiao’an, et al. Characteristics of crust soil seed bank in Horqin Sandy Land[J]. Journal of Soil and Water Conservation, 2007,21(6):187-191. ] | |
[18] | 陈荣毅, 张元明, 潘伯荣, 等. 古尔班通古特沙漠土壤养分空间分异与干扰的关系[J]. 中国沙漠, 2007,27(2):257-265. |
[ Chen Rongyi, Zhang Yuanming, Pan Borong, et al. Relation between disturbance and spatial heterogeneity of soil nitration in Gurbantunggut Desert[J]. Journal of Desert Research, 2007,27(2):257-265. ] | |
[19] | Hernandez R R, Sandquist D R. Disturbance of biological soil crust increases emergence of exotic vascular plants in California sage scrub[J]. Plant Ecology, 2011,212(10):1709-1721. |
[20] | 张立运, 陈昌笃. 论古尔班通古通沙漠植物多样性的一般特点[J]. 生态学报, 2002,22(11):1923-1932. |
[ Zhang Liyun, Chen Changdu. On the general characteristics of plant diversity of Gurbantunggut Sandy Desert[J]. Acta Ecologica Sinica, 2002,22(11):1923-1932. ] | |
[21] | 王雪芹, 张元明, 蒋进. 古尔班通古特沙漠南部沙垄水分动态——兼论积雪融化和冻土变化对沙丘水分分异作用[J]. 冰川冻土, 2006,28(2):262-268. |
[ Wang Xueqin, Zhang Yuanming, Jiang Jin. Variation pattern of soil water content in longitudinal dune in the Southern part of Gurbantünggüt Desert: How snowmelt and frozen soil change affect the soil moisture[J]. Journal of Glaciology and Geocryology, 2006,28(2):262-268. ] | |
[22] | 张元明. 荒漠地表生物土壤结皮的微结构及其早期发育特征[J]. 科学通报, 2005,50(1):42-47. |
[ Zhang Yuanming. Microstructure and early development characteristics of crusts in desert surface biological soil[J]. Chinese Science Bulletin, 2005,50(1):42-47. ] | |
[23] | Zhang Y M, Wang H L, Wang X Q, et al. The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of northwestern China[J]. Geoderma, 2006,132(3-4):441-449. |
[24] | 张元明, 潘惠霞, 潘伯荣. 古尔班通古特沙漠不同地貌部位生物结皮的选择性分布[J]. 水土保持学报, 2004,18(4):61-64. |
[ Zhang Yuanming, Pan Huixia, Pan Borong. Distribution characteristics of biological crust on sand dune surface in Gurbantunggut Desert, Xinjiang[J]. Journal of Soil and Water Conservation, 2004,18(4):61-64. ] | |
[25] | Zhang B C, Li R H, Xiao P, et al. Cyanobacterial composition and spatial distribution based on pyrosequencing data in the Gurbantunggut Desert, Northwestern China[J]. Journal of Basic Microbiology, 2016,56(3):308-320. |
[26] | Zhang B C, Zhou X B, Zhang Y M. Responses of microbial activities and soil physical-chemical properties to the successional process of biological soil crusts in the Gurbantunggut Desert, Xinjiang[J]. Journal of Arid Land, 2015,7(1):101-109. |
[27] | 郭水良, 于晶, 陈国奇. 生态学数据分析——方法、程序与软件[M]. 北京: 科学出版社, 2015: 60-63 |
[ Guo Shuiliang, Yu Jing, Chen Guoqi. Ecological Data Analysis: Methods, Procedures and Software[M]. Beijing: Science Press, 2015: 60-63. ] | |
[28] | Liu Y B, Zhao L N, Wang Z R, et al. Changes in functional gene structure and metabolic potential of the microbial community in biological soil crusts along a revegetation chronosequence in the Tengger Desert[J]. Soil Biology & Biochemistry, 2018,126:40-48. |
[29] | Deines L, Rosentreter R, Eldridge D J, et al. Germination and seedling establishment of two annual grasses on lichen-dominated biological soil crusts[J]. Plant and Soil, 2007,295(1-2):22-35. |
[30] | 龙利群, 李新荣. 土壤微生物结皮对两种一年生植物幼苗存活和生长的影响[J]. 中国沙漠, 2003,23(6):53-57. |
[ Long Liqiong, Li Xinrong. Effects of soil microbiotic crusts on seedling survival and seedling growth of two annual plants[J]. Journal of Desert Research, 2003,23(6):53-57. ] | |
[31] | 李国栋, 张元明. 生物土壤结皮与种子附属物对4种荒漠植物种子萌发的交互影响[J]. 中国沙漠, 2014,34(3):725-731. |
[ Li Guodong, Zhang Yuanming. Interactive effects of biological soil crusts and seed appendages on seed germination of four desert species[J]. Journal of Desert Research, 2014,34(3):725-731. ] | |
[32] | 聂华丽, 张元明, 吴楠, 等. 生物结皮对5种不同形态的荒漠植物种子萌发的影响[J]. 植物生态学报, 2009,33(1):161-170. |
[ Nie Huali, Zhang Yuanming, Wu Nan, et al. Effects of siolocical crusts on the germination of five desert vascular plants with different seed morphologies[J]. Chinese Journal of Plant Ecology, 2009,33(1):161-170. ] | |
[33] | 王莎莎, 张元明. 尖喙牻牛儿苗繁殖体外部形态特征[J]. 生态学杂志, 2010,29(5):855-861. |
[ Wang Shasha, Zhang Yuanming. Morphological characteristics of Erodium oxyrrhynchum diaspore[J]. Chinese Journal of Ecology, 2010,29(5):855-861. ] | |
[34] | 张学涛. 三种菊科短命植物的生殖生态学研究[D]. 乌鲁木齐: 新疆农业大学, 2006. |
[ Zhang Xuetao. The Reproductive Ecology on Three Species of Ephemeral Plants in Asteraceae[D]. Urumqi: Xinjiang Agricultural University, 2006. ] | |
[35] | 布海丽且姆·阿卜杜热合曼. 中国干旱区18种豆科植物和短命植物囊果苔草的种子萌发特性研究[D]. 北京: 中国科学院大学, 2015. |
[ Buhailim Abdu Therhaman. Study on Seed Germination Characteristics of 18 Species of Leguminous Plants and Short-lived Carex physodes in Arid Regions of China[D]. Beijing: University of Chinese Academy of Sciences, 2015. ] | |
[36] | 宋明方. 准噶尔荒漠150种植物传播体形态特征及其生态适应[D]. 乌鲁木齐: 中国科学院新疆生态与地理研究所, 2009. |
[ Song Mingfang. Morphological Characteristics of 150 Plant Vectors in Junggar Desert and Their Ecological Adaptation[D]. Urumqi: Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 2009. ] | |
[37] | 王雪芹, 蒋进, 雷加强, 等. 古尔班通古特沙漠短命植物分布及其沙面稳定意义[J]. 地理学报, 2003,58(4):598-605. |
[ Wang Xueqing, Jiang Jin, Lei Jiaqiang, et al. The distribution of ephemeral vegetation on the longitudinal dune surface and its stabilization significance in the Gurbantunggut Desert[J]. Acta Geographica Sinica, 2003,58(4):598-605. ] | |
[38] |
Zhang B C, Kong W D, Wu N, et al. Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, Northern China[J]. Journal of Basic Microbiology, 2016,56(6):670-679.
pmid: 26947139 |
[39] | Housman D C, Powers H H, Collins A D, et al. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert[J]. Journal of Arid Environments, 2006,66(4):620-634. |
[40] |
Yeager C M, Kornosky J L, Housman D C, et al. Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert[J]. Applied and Environmental Microbiology, 2004,70(2):973-983.
pmid: 14766579 |
[41] | 李新荣, 回嵘, 赵洋. 中国荒漠生物土壤结皮生态生理学研究[M]. 北京: 高等教育出版社, 2016: 1-45. |
[ Li Xinrong, Hui Rong, Zhao Yang. Eco-physiology of Biological Soil Crusts in Desert Regions of China [M]. Beijing: Higher Education Press, 2016: 1-45. ] | |
[42] | Xu L, Zhu B J, Li C N, et al. Development of biological soil crust prompts convergent succession of prokaryotic communities[J]. Catena, 2020,187:104360. |
[43] | 张元明, 杨维康, 王雪芹, 等. 生物结皮影响下的土壤有机质分异特征[J]. 生态学报, 2005,25(12):3420-3425. |
[ Zhang Yuanming, Yang Weikang, Wang Xueqin, et al. Influence of cryptogamic soil crusts on accumulation of soil organic matter in Gurbantunggut Desert, northern Xinjiang, China[J]. Acta Ecologica Sinica, 2005,25(12):3420-3425. ] | |
[44] | 张元明, 陈晋, 王雪芹, 等. 古尔班通古特沙漠生物结皮的分布特征[J]. 地理学报, 2005,60(1):53-60. |
[ Zhang Yuanming, Chen Jin, Wang Xueqin, et al. The distribution patterns of biological soil cust in Gurbantunggut Desert[J]. Acta Geographica Sinica, 2005,60(1):53-60. ] | |
[45] | 龚健, 张丙昌, 索菲娅. 生物结皮中优势蓝藻胞外多糖对几种荒漠草本植物种子萌发的影响[J]. 中国沙漠, 2015,35(3):639-644. |
[ Gong Jian, Zhang Bingchang, Sophia. Influence of exopolysaccharides from dominant cyanobacteria in microbiotic crusts on seed germination of several desert herbaceous plants[J]. Journal of Desert Research, 2015,35(3):639-644. ] | |
[46] | 吴鹏程. 中国科学院植物研究所苔藓标本室的足迹[J]. 植物杂志, 1998(4):14-15. |
[ Wu Pengcheng. Footprint of moss herbarium, institute of botany, Chinese academy of sciences[J]. Plants, 1998 (4):14-15. ] | |
[47] | 庄伟伟, 周晓兵, 张元明. 生物结皮对古尔班通古特沙漠3种荒漠草本植物生长特性与元素吸收的影响[J]. 植物研究, 2017,37(1):37-44 . |
[ Zhuang Weiwei, Zhou Xiaobing, Zhang Yuanming. Effects of biological soil crusts on growth and nutrient uptake in three desert herbs in the Gurbantunggut Desert, Northwestern China[J]. Bulletin of Botanical Research, 2017,37(1):37-44. ] | |
[48] | Tao Y, Zhang Y M. Seasonal changes in composition and distribution of herbaceous plants on sand dunes in Gurbantunggut Desert of China[J]. Vegetos-An International Journal of Plant Research, 2013,26(2):80-87. |
[49] | 李亚萍, 蒋进, 宋春武, 等. 莫索湾地区典型沙丘土壤因子与短命植物物种多样性的关系[J]. 干旱区研究, 2018,35(4):912-919. |
[ Li Yaping, Jiang Jin, Song Chunwu, et al. Relationship Between soil factors and ephemeral plant species diversity on typical sand dunes in the Mosuowan Region[J]. Arid Zone Research, 2008,35(4):912-919. ] | |
[50] | 张元明, 聂华丽. 生物土壤结皮对准噶尔盆地5种荒漠植物幼苗生长与元素吸收的影响[J]. 植物生态学报, 2011,35(4):380-388. |
[ Zhang Yuanming, Nie Huali. Effects of biological soil crusts on seedling growth and element uptake in five desert plants in Junggar Basin, western China[J]. Chinese Journal of Plant Ecology, 2011,35(4):380-388. ] | |
[51] | 刘晓, 丛静, 卢慧, 等. 典型阔叶林的物种多样性分布和环境解释[J]. 生态科学, 2016,35(4):125-133. |
[ Liu Xiao, Cong Jing, Lu Hui, et al. Distribution of species diversity and environmental interpretation of typical broadleaved forests[J]. Ecological Science, 2016,35(4):125-133. ] | |
[52] | 张建贵, 王理德, 姚拓, 等. 东祁连山不同退化草地植物群落特征与土壤养分特性[J]. 水土保持学报, 2019,33(1):227-233. |
[ Zhang Jiangui, Wang Lide, Yao tuo, et al. Characteristics of plant community and soil nutrient of different degraded grasslands in East Qilian Mountains[J]. Journal of Soil and Water Conservation, 2019,33(1):227-233. ] |
[1] | 李小锋, 惠婷婷, 李耀明, 毛洁菲, 王光宇, 范连连. 不同放牧管理方式对新疆山地草原植物群落特征的影响[J]. 干旱区研究, 2024, 41(1): 124-134. |
[2] | 王理德, 宋达成, 李广宇, 赵赫然, 郑克文. 双龙沟矸石治理过程中植物群落演替及物种多样性研究[J]. 干旱区研究, 2023, 40(8): 1294-1303. |
[3] | 王思淇, 张建军, 张彦勤, 赵炯昌, 胡亚伟, 李阳, 唐鹏, 卫朝阳. 晋西黄土区不同密度刺槐林下植物群落物种多样性[J]. 干旱区研究, 2023, 40(7): 1141-1151. |
[4] | 乔静娟, 左小安, 岳平, 王国林, 王景圆, 王泽宙. 养分添加与干扰对荒漠草原群落组成及构建的影响[J]. 干旱区研究, 2023, 40(6): 958-970. |
[5] | 许毓哲, 林涛, 李君. 替代稳态下阜康北部荒漠生态弹性的时空格局[J]. 干旱区研究, 2023, 40(5): 808-817. |
[6] | 薛智暄, 张丽, 王新军, 李永康, 张冠宏, 李沛尧. 古尔班通古特沙漠SMAP土壤水分产品降尺度分析[J]. 干旱区研究, 2023, 40(4): 583-593. |
[7] | 闫沛迎,屈建军,王理德,肖建华,张圆,王晓红,郭树江. 机械沙障固沙对生物土壤结皮形成发育的影响[J]. 干旱区研究, 2023, 40(12): 1931-1937. |
[8] | 满多清, 李得禄, 刘明成, 张德魁, 唐进年, 陈芳, 付贵全, 杨雪梅, 丁峰. 民勤西沙窝沙区不同演替阶段植被变化特征研究[J]. 干旱区研究, 2023, 40(12): 1949-1958. |
[9] | 程锋梅,李生宇,郑伟,赵淳宇,范敬龙,王世杰,王海峰,俞祥祥. 3类典型株型草本植物对沙面风蚀抑制作用的研究[J]. 干旱区研究, 2022, 39(5): 1526-1533. |
[10] | 张巧关,张道远,刘会良. 新疆葱属植物区系地理特征[J]. 干旱区研究, 2022, 39(2): 522-540. |
[11] | 张媛媛,孟欢欢,周晓兵,尹本丰,周多奇,陶冶. 不同生境/萌发类型尖喙牻牛儿苗生物量分配特征[J]. 干旱区研究, 2022, 39(2): 541-550. |
[12] | 王佳,田青,王理德,何洪盛,宋达成,郭春秀. 民勤青土湖区不同年限退耕地对土壤水分与物种多样性的影响[J]. 干旱区研究, 2022, 39(2): 605-614. |
[13] | 李永康,王新军,马燕飞,胡贵锋,桂海月,张冠宏. 基于Catboost的AMSR-2半经验地表温度降尺度[J]. 干旱区研究, 2021, 38(6): 1637-1649. |
[14] | 王童犇,朱芩,侯晓巍,郝家田,李智华,侯琳. 祁连圆柏群落特征沿年降水量梯度的变化格局[J]. 干旱区研究, 2021, 38(6): 1695-1703. |
[15] | 庄伟伟,侯宝林. 古尔班通古特沙漠短命植物的氮素吸收策略[J]. 干旱区研究, 2021, 38(5): 1393-1400. |
|