干旱区研究 ›› 2025, Vol. 42 ›› Issue (5): 788-799.doi: 10.13866/j.azr.2025.05.02 cstr: 32277.14.AZR.20250502
收稿日期:2025-03-04
修回日期:2025-04-09
出版日期:2025-05-15
发布日期:2025-10-22
通讯作者:
李志忠. E-mail: lizz@fjnu.edu.cn作者简介:邵俊杰(2004-),男,主要从事风沙地貌与环境演变研究. E-mail: 17306911966@163.com
基金资助:
SHAO Junjie(
), TAO Tonglian, LI Zhizhong(
)
Received:2025-03-04
Revised:2025-04-09
Published:2025-05-15
Online:2025-10-22
摘要: 古尔班通古特沙漠受西风环流影响显著,是中亚干旱区沙尘释放的主要源地之一,其在全新世不同时期的气候干湿、风沙变化规律有待进一步探究。本文选取古尔班通古特沙漠南缘两个典型沙丘(沙垄)剖面,采用光释光测年技术建立剖面年代标尺,以风积物粒度参数、微量元素含量及元素比值作为环境代用指标,综合提取沙丘沉积序列记录的古气候变化信息。结果表明:研究区晚全新世以来古气候和风沙活动强度有较明显变化,约4.71~2.15 ka,气候冷暖交替、干燥少雨,风沙波动较大;2.15~0.75 ka,气候较为暖湿、风沙活动较弱;0.75 ka至今,前期的小冰期风沙活动较强,后期气候向暖干化方向发展。总体上,研究区的气温变化与全球变化具有较好的一致性,但湿度波动与风沙活动强度变化具有明显的区域性特点。
邵俊杰, 陶通炼, 李志忠. 古尔班通古特沙漠南缘沉积物粒度和微量元素记录晚全新世气候变化[J]. 干旱区研究, 2025, 42(5): 788-799.
SHAO Junjie, TAO Tonglian, LI Zhizhong. Late Holocene climate change recorded by grain size and trace elements in sediments from the southern margin of the Gurbantunggut Desert[J]. Arid Zone Research, 2025, 42(5): 788-799.
表1
研究剖面OSL测年样品的年代及相关参数值"
| 样号 | 埋深/m | 铀/(μg·g-1) | 钍/(μg·g-1) | 钾/(μg·g-1) | 环境剂量率/(Gy·ka-1) | 等效剂量/Gy | 年龄/ka |
|---|---|---|---|---|---|---|---|
| MT-01 | 0.6 | 1.43±0.02 | 5.17±0.07 | 2.04±0.02 | 2.78±0.12 | 0.41±0.03 | 0.15±0.01 |
| MT-02 | 1.5 | 1.57±0.02 | 4.64±0.03 | 2.01±0.02 | 2.72±0.12 | 5.75±0.17 | 2.11±0.11 |
| MT-03 | 3.6 | 1.33±0.01 | 4.71±0.02 | 1.92±0.02 | 2.55±0.11 | 5.95±0.17 | 2.33±0.12 |
| WT-01 | 1.0 | 1.78±0.04 | 5.98±0.06 | 1.95±0.02 | 2.83±0.12 | 6.63±0.13 | 2.34±0.11 |
| WT-02 | 1.5 | 1.88±0.02 | 8.26±0.07 | 1.82±0.01 | 2.87±0.12 | 5.99±0.14 | 2.09±0.10 |
| WT-03 | 2.0 | 1.58±0.02 | 5.78±0.04 | 1.96±0.01 | 2.76±0.12 | 7.13±0.23 | 2.59±0.14 |
| WT-04 | 2.5 | 1.46±0.02 | 6.71±0.03 | 1.91±0.02 | 2.73±0.11 | 11.26±0.34 | 4.13±0.21 |
| WT-05 | 3.0 | 1.23±0.02 | 5.19±0.03 | 1.90±0.01 | 2.56±0.11 | 10.68±0.27 | 4.18±0.21 |
| WT-06 | 3.5 | 1.32±0.02 | 8.25±0.07 | 1.89±0.02 | 2.76±0.12 | 9.68±0.40 | 3.51±0.21 |
| WT-07 | 4.0 | 1.30±0.01 | 5.59±0.04 | 2.03±0.02 | 2.70±0.12 | 12.74±0.44 | 4.71±0.26 |
表2
MT剖面风成砂微量元素丰度"
| 元素 | As | Ba | Co | Cu | Cr | La | Mn | Ni | Nb |
|---|---|---|---|---|---|---|---|---|---|
| 平均值 | 13.95 | 591.95 | 7.76 | 32.03 | 42.76 | 21.92 | 558.95 | 22.57 | 17.76 |
| 变化范围 | 13~14 | 460~695 | 6~9 | 21~36 | 36~49 | 18~26 | 531~611 | 12~26 | 15~22 |
| 标准差 | 0.23 | 43.82 | 0.72 | 2.59 | 3.08 | 2.07 | 18.71 | 2.24 | 1.23 |
| UCC值 | 1.50 | 550.00 | 10.00 | 25.00 | 35.00 | 30.00 | 600.00 | 20.00 | 25.00 |
| 元素 | Pb | Rb | Th | Y | Sr | Zn | V | Ti | Zr |
| 平均值 | 46.27 | 94.46 | 24.59 | 29.65 | 269.00 | 49.14 | 76.97 | 2950.78 | 211.86 |
| 变化范围 | 33~53 | 89~99 | 17~28 | 28~31 | 252~283 | 44~55 | 75~79 | 2799~3119 | 269~174 |
| 标准差 | 2.89 | 2.10 | 1.59 | 0.59 | 6.75 | 2.69 | 0.90 | 75.72 | 17.78 |
| UCC值 | 20.00 | 112.00 | 10.70 | 22.00 | 350.00 | 71.00 | 60.00 | 3000.00 | 190.00 |
表3
WT剖面风成砂微量元素丰度"
| 元素 | As | Ba | Co | Cu | Cr | La | Mn | Ni | Nb |
|---|---|---|---|---|---|---|---|---|---|
| 平均值 | 13.98 | 550.30 | 6.00 | 24.34 | 44.09 | 20.89 | 560.11 | 24.02 | 18.30 |
| 变化范围 | 13~14 | 503~643 | 4~8 | 18~38 | 38~53 | 18~24 | 503~645 | 22~26 | 17~20 |
| 标准差 | 0.15 | 32.97 | 0.68 | 3.18 | 3.26 | 1.48 | 24.05 | 1.09 | 0.70 |
| UCC值 | 1.50 | 550.00 | 10.00 | 25.00 | 35.00 | 30.00 | 600.00 | 20.00 | 25.00 |
| 元素 | Pb | Rb | Th | Y | Sr | Zn | V | Ti | Zr |
| 平均值 | 49.11 | 97.39 | 25.16 | 30.31 | 268.93 | 43.43 | 76.91 | 2991.07 | 272.52 |
| 变化范围 | 44~53 | 91~106 | 22~27 | 29~32 | 256~308 | 37~50 | 73~82 | 2632~3478 | 186~346 |
| 标准差 | 1.97 | 2.62 | 1.01 | 0.67 | 10.29 | 2.97 | 1.43 | 137.24 | 38.46 |
| UCC值 | 20.00 | 112.00 | 10.70 | 22.00 | 350.00 | 71.00 | 60.00 | 3000.00 | 190.00 |
| [1] | Kellogg A C, Griffin W D. Aerobiology and the global transport of desert dust[J]. Trends in Ecology & Evolution, 2006, 21(11): 638-644. |
| [2] | 陈瑶, 鹿化煜, 吴会娟, 等. 全球沙漠变化的气候影响[J]. 中国科学:地球科学, 2023, 53(5): 1057-1066. |
| [Chen Yao, Lu Huayu, Wu Huijuan, et al. Global desert variation under climatic impact during 1982-2020[J]. Scientia Sinica (Terrae), 2023, 53(5): 1057-1066.] | |
| [3] | 吴会娟, 鹿化煜, 王菁菁, 等. 全球沙漠面积和粉尘排放量的新估算[J]. 科学通报, 2022, 67(9): 860-871. |
| [Wu Huijuan, Lu Huayu, Wang Jingjing, et al. A new estimate of global desert area and quantity of dust emission[J]. Chinese Science Bulletin, 2022, 67(9): 860-871.] | |
| [4] | Okin S G, Mahowald N, Chadwick A O, et al. Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems[J]. Global Biogeochemical Cycles, 2004, 18(2): 1-9. |
| [5] | Yang X, Scuderi L, Paillou P, et al. Quaternary environmental changes in the drylands of China: A critical review[J]. Quaternary Science Reviews, 2011, 30(23-24): 3219-3233. |
| [6] |
范小露, 张新毅, 田明中. 巴丹吉林沙漠东南缘末次冰期沉积物地球化学特征及气候指示意义[J]. 干旱区地理, 2021, 44(2): 409-417.
doi: 10.12118/j.issn.1000–6060.2021.02.12 |
|
[Fan Xiaolu, Zhang Xinyi, Tian Mingzhong. Geochemical characteristics and paleoclimatic significance of the last glacial sediments in the southeastern margin of Badain Jaran Desert[J]. Arid Land Geography, 2021, 44(2): 409-417.]
doi: 10.12118/j.issn.1000–6060.2021.02.12 |
|
| [7] |
李想, 苏志珠, 韩瑞, 等. 风成沉积地层化学元素记录的毛乌素沙地气候变化[J]. 冰川冻土, 2019, 41(3): 563-573.
doi: 10.7522/j.issn.1000-0240.2019.0305 |
|
[Li Xiang, Su Zhizhu, Han Rui, et al. Climate change of Mu Us Desert revealed by geochemical elements in the aeolian sedimentary stratum[J]. Journal of Glaciology and Geocryology, 2019, 41(3): 563-573.]
doi: 10.7522/j.issn.1000-0240.2019.0305 |
|
| [8] | Long H, Shen J, Chen J, et al. Holocene moisture variations over the arid central Asia revealed by a comprehensive sand-dune record from the central Tian Shan, NW China[J]. Quaternary Science Reviews, 2017, 174: 13-32. |
| [9] | 陈惠中, 金炯, 董光荣. 全新世古尔班通古特沙漠演化和气候变化[J]. 中国沙漠, 2001, 21(4): 18-24. |
| [Chen Huizhong, Jin Jiong, Dong Guangrong. Holocene evolution processes of Gurbantunggut Desert and climatic changes[J]. Journal of Desert Research, 2001, 21(4): 18-24.] | |
| [10] | Li S, Fan A. OSL chronology of sand deposits and climate change of last 18 ka in Gurbantunggut Desert, Northwest China[J]. Journal of Quaternary Science, 2011, 26(8): 813-818. |
| [11] |
徐宇杰, 刘冰, 孙爱军, 等. 古尔班通古特沙漠及周边区域全新世环境演变研究进展[J]. 干旱区地理, 2023, 46(4): 550-562.
doi: 10.12118/j.issn.1000-6060.2022.306 |
|
[Xu Yujie, Liu Bing, Sun Aijun, et al. Research progress of Holocene environmental evolution in the Gurbantunggut Desert and its surrounding areas[J]. Arid Land Geography, 2023, 46(4): 550-562.]
doi: 10.12118/j.issn.1000-6060.2022.306 |
|
| [12] | Cao M, Lü P, Ma F, et al. Holocene aeolian environmental dynamics in fixed and semi-fixed deserts over the arid Central Asia revealed by comprehensive sand-dune records[J]. Catena, 2024, 246: 108368. |
| [13] |
邹晓君, 马运强, 李志忠, 等. 古尔班通古特沙漠南缘风沙沉积记录的中晚全新世气候变化[J]. 中国沙漠, 2023, 43(6): 98-110.
doi: 10.7522/j.issn.1000-694X.2023.00057 |
|
[Zou Xiaojun, Ma Yunqiang, Li Zhizhong, et al. Mid-Late Holocene climate change recorded by eolian sand deposition in the southern margin of Gurbantunggut Desert[J]. Journal of Desert Research, 2023, 43(6): 98-110.]
doi: 10.7522/j.issn.1000-694X.2023.00057 |
|
| [14] | 中国科学院新疆综合考察队. 新疆地貌[M]. 北京: 科学出版社, 1978. |
| [Xinjiang Comprehensive Investigation Team of Chinese Academy of Sciences. Geomorphology of Xinjiang[M]. Beijing: Science Press, 1978.] | |
| [15] | 钱亦兵, 吴兆宁. 古尔班通古特沙漠环境研究[M]. 北京: 科学出版社, 2010. |
| [Qian Yibing, Wu Zhaoning. Environmental Research in the Gurbantunggut Desert[M]. Beijing: Science Press, 2010.] | |
| [16] | 吴正. 中国沙漠及其治理[M]. 北京: 科学出版社, 2009. |
| [Wu Zheng. Deserts in China and Their Management[M]. Beijing: Science Press, 2009.] | |
| [17] | Folk R L, Ward W C. Brazos River Bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1): 3-26. |
| [18] | Aitken M J. An Introduction to Optical Dating[M]. Oxford, UK: Oxford University Press, 1998. |
| [19] | Lu Y, Wang X, Wintle A. A new OSL chronology for dust accumulation in the last 130,000 yr for the Chinese Loess Plateau[J]. Quaternary Research, 2007, 67(1): 152-160. |
| [20] | 刘铮瑶. 古尔班通古特沙漠沙丘地貌及其发育环境[D]. 西安: 陕西师范大学, 2020. |
| [Liu Zhengyao. Dune Landform and Its Development Environment in Gurbantunggut Desert[D]. Xi’an: Shaanxi Normal University, 2020.] | |
| [21] | 杨万志, 姜云辉, 周军, 等. 新疆区域地球化学参数特征及其研究意义[J]. 新疆地质, 2008, 26(3): 236-239. |
| [Yang Wanzhi, Jiang Yunhui, Zhou Jun, et al. Parameter characteristics and research meaning of regional geochemistry of Xinjiang[J]. Xinjiang Geology, 2008, 26(3): 236-239.] | |
| [22] | Hu Z, Gao S. Upper crustal abundances of trace elements: A revision and update[J]. Chemical Geology, 2008, 253(3-4): 205-221. |
| [23] | 赵振华. 微量元素地球化学原理[M]. 北京: 科学出版社, 2016. |
| [Zhao Zhenhua. Geochemical Principle of Trace Elements[M]. Beijing: Science Press, 2016.] | |
| [24] | 文启忠. 中国黄土地球化学[M]. 北京: 科学出版社, 1989. |
| [Wen Qizhong. Loess Geochemistry of China[M]. Beijing: Science Press, 1989.] | |
| [25] | 靳建辉, 李志忠, 陈秀玲, 等. 新疆伊犁塔克尔莫乎尔沙漠全新世晚期沉积微量元素反映的古气候变化[J]. 沉积学报, 2011, 29(2): 336-345. |
| [Jin Jianhui, Li Zhizhong, Chen Xiuling, et al. Paleoclimatic significance of geochemical elements from Takermohur Desert, Xinjiang since late Holocene[J]. Acta Sedimentologica Sinica, 2011, 29(2): 336-345.] | |
| [26] | 中国科学院新疆资源开发综合考察队. 新疆第四纪地质与环境[M]. 北京: 中国农业出版社, 1994. |
| [Xinjiang Resources Development Comprehensive Investigation Team of Chinese Academy of Sciences. Quaternary Geology and Environment in Xinjiang[M]. Beijing: China Agriculture Press, 1994.] | |
| [27] | 陈吉阳. 天山乌鲁木齐河源全新世冰川变化的地衣年代学等若干问题之初步研究[J]. 中国科学(B辑), 1988(1): 95-104. |
| [Chen Jiyang. A preliminary study on the lichen chronology of Holocene glacier changes in the source of Urumqi River, Tianshan Mountains[J]. Scientia Sinica (Science in China), 1988(1): 95-104.] | |
| [28] | 阎顺, 穆桂金, 孔昭宸, 等. 天山北麓晚全新世环境演变及其人类活动的影响[J]. 冰川冻土, 2004, 26(4): 403-410. |
| [Yan Shun, Mu Guijin, Kong Zhaochen, et al. Environmental evolvement and human activity impact in the late Holocene on the north slopes of the Tianshan Mountains, China[J]. Journal of Glaciology and Geocryology, 2004, 26(4): 403-410.] | |
| [29] | 洪业汤, 姜洪波, 洪冰, 等. 近5000 a的气候波动与太阳变化[J]. 中国科学(D辑:地球科学), 1998, 28(6): 491-497. |
| [Hong Yetang, Jiang Hongbo, Hong Bing, et al. Climate fluctuation and solar change in recent 5000 a[J]. Science in China, 1998, 28(6): 491-497.] | |
| [30] | 王绍武. 全新世气候变化[M]. 北京: 气象出版社, 2011. |
| [Wang Shaowu. Holocene Climate Change[M]. Beijing: Meteorological Press, 2011.] | |
| [31] | 冯晓华, 阎顺, 倪健, 等. 新疆北部平原湖泊记录的晚全新世湖面波动及环境变化[J]. 科学通报, 2006, 51(1): 49-55. |
| [Feng Xiaohua, Yan Shun, Ni Jian, et al. Late Holocene lake level fluctuations recorded by plain lakes in northern Xinjiang[J]. Chinese Science Bulletin, 2006, 51(1): 49-55.] | |
| [32] | 蒋庆丰, 沈吉, 刘兴起, 等. 2.5 ka来新疆吉力湖湖泊沉积记录的气候环境变化[J]. 湖泊科学, 2010, 22(1): 119-126. |
| [Jiang Qingfeng, Shen Ji, Liu Xingqi, et al. Environmental changes recorded by lake sediments from Lake Jili, Xinjiang during the past 2500 years[J]. Journal of Lake Sciences, 2010, 22(1): 119-126.] | |
| [33] | Ran M, Feng Z. Variation in carbon isotopic composition over the past ca. 46,000 yr in the loess-paleosol sequence in central Kazakhstan and paleoclimatic significance[J]. Organic Geochemistry, 2014, 73: 47-55. |
| [34] | 刘露雨. 环准噶尔盆地全新世人类活动遗址的时空分布及其气候环境影响因素研究[D]. 兰州: 兰州大学, 2022. |
| [Liu Luyü. Study on the Spatial-Temporal Distribution of Holocene Human Occupation Sites around the Junggar Basin and its Climatic and Environmental Influence Factor[D]. Lanzhou: Lanzhou University, 2022.] | |
| [35] | Jin L, Chen F, Morrill C, et al. Causes of early Holocene desertification in arid central Asia[J]. Climate Dynamics, 2012, 38(7-8): 1577-1591. |
| [36] | Chen F, Jia J, Chen J, et al. A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China[J]. Quaternary Science Reviews, 2016, 146: 134-146. |
| [37] | 谢海超. 地球化学指标记录的亚洲西风区晚第四纪气候变化特征[D]. 兰州: 兰州大学, 2019. |
| [Xie Haichao. Climate Change Characteristics in the Asian Westerlies Dominated Area Recorded by Geochemical Proxies during Late Quaternary[D]. Lanzhou: Lanzhou University, 2019.] |
| [1] | 商淑静, 刘丹辉, 周轶昕, 吴家驹, 陆婷, 李文军. 气候变化背景下软紫草在中国的潜在适生区预测[J]. 干旱区研究, 2025, 42(9): 1628-1639. |
| [2] | 杨孜悦, 尹本丰, 张署军, 黄韵杰, 杨傲, 张元明, 高英志, 井长青. 古尔班通古特沙漠不同坡位地衣结皮土壤磷组分分布特征[J]. 干旱区研究, 2025, 42(7): 1236-1245. |
| [3] | 刘佳月, 寇威, 原建强, 薛少琪, 王旭东. 添加中微量元素对风沙土矿化特征和土壤有机碳组分的影响[J]. 干旱区研究, 2025, 42(7): 1246-1256. |
| [4] | 严应存, 孙树娇, 余迪, 高贵生. 气候变化对柴达木盆地植被绿度的影响及趋势预估[J]. 干旱区研究, 2025, 42(7): 1257-1268. |
| [5] | 罗磊, 李曦光, 李萧婷, 王磊, 王蕾. 气候变化下沙棘在新疆潜在分布格局的变化[J]. 干旱区研究, 2025, 42(3): 511-522. |
| [6] | 赵艳芬, 王春成, 潘伯荣. 气候变化下脓疮草在中国的适宜分布区预测[J]. 干旱区研究, 2025, 42(10): 1851-1859. |
| [7] | 岳胜如, 胡雪菲, 侯晓华, 孟福军. 基于CMIP6模式的塔里木河流域棉花生产评估[J]. 干旱区研究, 2025, 42(10): 1925-1938. |
| [8] | 邹彬, 邹珊, 杨余辉. 1990—2023年新疆地表水体面积动态变化及其驱动因素[J]. 干旱区研究, 2025, 42(1): 40-50. |
| [9] | 吕壮壮, 乔庆庆, 董孙艺, 汪冬. 中中新世气候适宜期全球变暖背景下亚洲内陆干旱区古气候演化特征及驱动机制[J]. 干旱区研究, 2024, 41(8): 1309-1322. |
| [10] | 周杰, 王旭虎, 杜维波, 周晓雷, 杨洁, 张晓玮. 气候变化背景下的天山云杉潜在分布区预测[J]. 干旱区研究, 2024, 41(7): 1167-1176. |
| [11] | 梁双河, 牛最荣, 贾玲. 祖厉河干流近65 a径流变化及归因分析[J]. 干旱区研究, 2024, 41(6): 928-939. |
| [12] | 唐可欣, 郭建斌, 何亮, 陈林, 万龙. 中国旱区GPP时空演变特征及影响因素研究[J]. 干旱区研究, 2024, 41(6): 964-973. |
| [13] | 张嘉琪, 刘招, 韩忠青, 王丽霞, 张晋霞, 岳甲寅, 管子隆. 气候变化下泾河流域蓝绿水变化趋势及预测[J]. 干旱区研究, 2024, 41(12): 2045-2055. |
| [14] | 张倩, 曹广超, 张乐乐, 赵美亮. 祁连山南坡植被绿度时空变化及其对气候变化和人类活动的响应[J]. 干旱区研究, 2024, 41(12): 2143-2153. |
| [15] | 胡广录, 樊亚仑, 陶虎, 李昊辰, 杨鹏华. 石羊河下游蔡旗站径流变化趋势及影响因素[J]. 干旱区研究, 2024, 41(11): 1842-1852. |
|
||