干旱区研究 ›› 2023, Vol. 40 ›› Issue (7): 1094-1106.doi: 10.13866/j.azr.2023.07.07
孟乘枫1(),仲涛1,郑江华1,2(),王南1,刘泽轩1,任祥源3
收稿日期:
2023-03-27
修回日期:
2023-05-04
出版日期:
2023-07-15
发布日期:
2023-08-01
通讯作者:
郑江华. E-mail: 作者简介:
孟乘枫(2001-),女,主要研究方向为资源环境遥感. E-mail: 基金资助:
MENG Chengfeng1(),ZHONG Tao1,ZHENG Jianghua1,2(),WANG Nan1,LIU Zexuan1,REN Xiangyuan3
Received:
2023-03-27
Revised:
2023-05-04
Online:
2023-07-15
Published:
2023-08-01
摘要:
探究昆仑山冰湖变化特征对区域生态环境和发展至关重要。基于Google Earth Engine(GEE)遥感云平台进行监督分类,研究昆仑山近20 a的冰湖分布面积和数量变化情况,并结合气温、降水和冰川面积进行驱动力分析。结果表明:(1) 2000—2020年昆仑山地区冰湖数量增加39.25%,面积增加81.35%,呈西多东少的分布特征。(2) 昆仑山地区面积小于0.1 km2的冰湖对气候变化更敏感,增长速度最快;昆仑山冰湖主要集中在海拔4600~5600 m,冰湖数量和面积分别占总量的71.58%和70.51%。(3) 2000—2020年昆仑山地区气温降低3.45%,降水减少6.27%,冰川面积减少了21.15%,冰川融化产生的冰川融水是冰湖增长的主要原因。研究结果可为干旱区水资源的保护和利用、灾害预警等方面提供科学支撑。
孟乘枫, 仲涛, 郑江华, 王南, 刘泽轩, 任祥源. 昆仑山冰湖分布时空特征及驱动力[J]. 干旱区研究, 2023, 40(7): 1094-1106.
MENG Chengfeng, ZHONG Tao, ZHENG Jianghua, WANG Nan, LIU Zexuan, REN Xiangyuan. Analysis of temporal and spatial characteristics and driving forces of Kunlun glacial lakes[J]. Arid Zone Research, 2023, 40(7): 1094-1106.
表1
气温、降水和冰川面积与昆仑山冰湖的相关关系"
气温与 冰湖数量 | 气温与 冰湖面积 | 降水与 冰湖数量 | 降水与 冰湖面积 | 冰川面积与 冰湖数量 | 冰川面积与 冰湖面积 | ||
---|---|---|---|---|---|---|---|
总冰湖 | 0.095 | 0.052 | -0.085 | -0.048 | -0.573** | -0.702** | |
不同区域冰湖 | 东昆仑山 | 0.178 | 0.079 | -0.264 | -0.021 | 0.031 | -0.594** |
西昆仑山 | 0.054 | 0.046 | -0.013 | -0.054 | -0.687** | -0.721** | |
不同规模冰湖 | <0.1 km2 | 0.114 | 0.001 | -0.090 | -0.021 | -0.612** | -0.729** |
0.1~0.2 km2 | -0.166 | 0.044 | 0.016 | 0.012 | -0.401* | -0.556** | |
>0.2 km2 | 0.057 | 0.073 | 0.005 | -0.070 | -0.467* | -0.673** | |
不同海拔冰湖 | 3.2~3.4 km | 0.115 | 0.039 | -0.104 | -0.137 | -0.609** | -0.697** |
3.4~3.6 km | 0.107 | 0.036 | -0.113 | -0.039 | -0.613** | -0.708** | |
3.6~3.8 km | 0.073 | 0.051 | -0.072 | -0.048 | -0.491* | -0.702** | |
3.8~4.0 km | 0.196 | 0.001 | -0.039 | 0.001 | -0.509* | -0.712** | |
4.0~4.2 km | 0.124 | 0.050 | -0.135 | -0.050 | -0.603** | -0.703** | |
4.2~4.4 km | 0.084 | 0.052 | -0.076 | -0.049 | -0.579** | -0.702** | |
4.4~4.6 km | 0.082 | 0.051 | -0.098 | -0.049 | -0.575** | -0.702** | |
4.6~4.8 km | 0.100 | 0.051 | -0.088 | -0.048 | -0.562** | -0.702** | |
4.8~5.0 km | 0.090 | 0.051 | -0.085 | -0.049 | -0.573** | -0.703** | |
5.0~5.2 km | 0.097 | 0.051 | -0.079 | -0.048 | -0.572** | -0.702** | |
5.2~5.4 km | 0.098 | 0.051 | -0.086 | -0.048 | -0.566** | -0.702** | |
5.4~5.6 km | 0.100 | 0.052 | -0.078 | -0.047 | -0.584** | -0.702** | |
5.6~5.8 km | 0.065 | 0.055 | -0.062 | -0.052 | -0.549** | -0.701** | |
5.8~6.0 km | -0.003 | 0.039 | 0.080 | -0.069 | -0.447* | -0.683** |
[1] |
姚晓军, 刘时银, 韩磊, 等. 冰湖的界定与分类体系——面向冰湖编目和冰湖灾害研究[J]. 地理学报, 2017, 72(7): 1173-1183.
doi: 10.11821/dlxb201707004 |
[Yao Xiaojun, Liu Shiyin, Han Lei, et al. Definition and classification systems of glacial lake for inventory and hazards study[J]. Acta Geographica Sinica, 2017, 72(7): 1173-1183. ]
doi: 10.11821/dlxb201707004 |
|
[2] | 张威, 王宁练, 李想, 等. 近20 a西喀喇昆仑地区吉尔吉特河流域冰川面积变化及其对气候变化的响应[J]. 山地学报, 2019, 37(3): 347-358. |
[Zhang Wei, Wang Ninglian, Li Xiang, et al. Glacier changes and its response to climate change in the gilgit river basin, western Karakorum Mountains over the past 20 years[J]. Mountain Research, 2019, 37(3): 347-358. ] | |
[3] |
刘建康, 张佳佳, 高波, 等. 我国西藏地区冰湖溃决灾害综述[J]. 冰川冻土, 2019, 41(6): 1335-1347.
doi: 10.7522/j.issn.1000-0240.2019.0073 |
[Liu Jiankang, Zhang Jiajia, Gao Bo, et al. An overview of glacial lake outburst flood in Tibet, China[J]. Journal of Glaciology and Geocryology, 2019, 41(6): 1335-1347. ]
doi: 10.7522/j.issn.1000-0240.2019.0073 |
|
[4] |
陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究[J]. 地理学报, 2017, 72(1): 18-26.
doi: 10.11821/dlxb201701002 |
[Chen Yaning, Li Zhi, Fang Gonghuan, et al. Impact of climate change on water resources in the Tianshan Mountains, Central Asia[J]. Acta Geographica Sinica, 2017, 72(1): 18-26. ]
doi: 10.11821/dlxb201701002 |
|
[5] | 车涛, 李新, P. K. Mool, 等. 希夏邦马峰东坡冰川与冰川湖泊变化遥感监测[J]. 冰川冻土, 2005, 27(6): 801-805. |
[Che Tao, Li Xin, P K Mool, et al. Monitoring glaciers and associated glacial lakes on the east slopes of Mount Xixabangma from remote sensing images[J]. Journal of Glaciology and Geocryology, 2005, 27(6): 801-805. ] | |
[6] | 王欣, 刘时银, 莫宏伟, 等. 我国喜马拉雅山区冰湖扩张及其气候意义[J]. 地理学报, 2011, 66(7): 895-904. |
[Wang Xin, Liu Shiyin, Mo Hongwei, et al. Expansion of glacial lakes and its implication for climate changes in the Chinese Himala ya[J]. Acta Geographica Sinca, 2011, 66(7): 895-904. ] | |
[7] | 丁悦凯, 刘睿, 张翠兰, 等. 喜马拉雅地区叶如藏布流域冰川和冰湖变化遥感监测研究[J]. 干旱区地理, 2022, 45(6): 1870-1880. |
[Ding Yuekai, Liu Rui, Zhang Cuilan, et al. Remote sensing monitoring of glacier and glacial lake changes in Yairu Zangbo Basin, Himalayas[J]. Arid Land Geography, 2022, 45(6): 1870-1880. ] | |
[8] | 苏鹏程, 李昊, 汪洋, 等. 喜马拉雅山中段冰湖体积估算与规模分级标准初探[J]. 山地学报, 2022, 40(1): 96-105. |
[Su Pengcheng, Li Hao, Wang Yang, et al. Volume estimation method for glacial lakes based on V-A relationship and its scale classification in central Himalaya[J]. Mountain Research, 2022, 40(1): 96-105. ] | |
[9] | 陈晓清, 崔鹏, 杨忠, 等. 近15 a喜玛拉雅山中段波曲流域冰川和冰湖变化[J]. 冰川冻土, 2005, 27(6): 793-800. |
[Chen Xiaoqing, Cui Peng, Yang Zhong, et al. Changr in glaciers and glacier lakes in Boiqu River Basin, Middle Himalayas during lsat 15 years[J]. Journal of Glaciology and Geocryology, 2005, 27(6): 793-800. ] | |
[10] | 宫鹏, 姚晓军, 孙美平, 等. 1967—2014年科西河流域冰湖时空变化[J]. 生态学报, 2017, 37(24): 8422-8432. |
[Gong Peng, Yao Xiaojun, Sun Meiping, et al. Spatial-temporal variations of glacial lakes in the Koshi River basin from 1967 to 2014[J]. Acta Ecologica Sinica, 2017, 37(24): 8422-8432. ] | |
[11] | 贺鹏, 童立强, 郭兆成, 等. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264. |
[He Peng, Tong Liqiang, Guo Zhaocheng, et al. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shihapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264. ] | |
[12] | 李海, 杨成生, 惠文华, 等. 基于遥感技术的高山极高山区冰川冰湖变化动态监测——以西藏藏南希夏邦玛峰地区为例[J]. 中国地质灾害与防治学报, 2021, 32(5): 10-17. |
[Li Hai, Yang Chengsheng, Hui Wenhua, et al. Changes of glaciers and glacier lakes in alpine and extremely alpine regions using remote sensing technology: A case study in the Shisha Pangma area of southern Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(5): 10-17. ] | |
[13] | 陶静, 赵文吉, 王旭, 等. 念青唐古拉山西段冰湖时空变化分析[J]. 干旱区研究, 2021, 38(3): 618-628. |
[Tao Jing, Zhao Wenji, Wang Xu, et al. Spatial changes of the glacial lakes in the western Nyainqentanglha Range[J]. Arid Zone Research, 2021, 38(3): 618-628. ] | |
[14] | 程尊兰, 时亮, 刘建康, 等. 帕隆藏布江上游冰湖分布及其变化[J]. 水土保持通报, 2012, 32(5): 8-12. |
[Cheng Zunlan, Shi Liang, Liu Jiankang, et al. Distribution and change of glacier lakes in the upper Palongzangbu River[J]. Bulletin of Soil and Water Conservation, 2012, 32(5): 8-12. ] | |
[15] |
闫斌, 贾洪果, 任文静, 等. 基于NDWI-NDSI组合阈值法的布加岗日冰湖提取及其变化分析[J]. 遥感学报, 2022, 26(11): 2344-2353.
doi: 10.11834/jrs.20210205 |
[Yan Bin, Jia Hongguo, Ren Wenjing, et al. Glacier lake extraction and variation analysis of the Bujiagangri glacier based on the NDWI-NDSI combination threshold method[J]. National Remote Sensing Bulletin, 2022, 26(11): 2344-2353. ]
doi: 10.11834/jrs.20210205 |
|
[16] | 雷鹏嗣, 王伟财, 张太刚. 1990-2020年那曲地区冰湖变化研究[J]. 北京师范大学学报(自然科学版), 2022, 58(6): 936-944. |
[Lei Pengsi, Wang Weicai, Zhang Taigang. Changes in glacial lakes in Naqu from 1990 to 2020[J]. Journal of Beijing Normal University(Natural Science), 2022, 58(6): 936-944. ] | |
[17] | 张圆. 西藏尼都藏布流域冰湖遥感监测及冰湖溃决洪水模拟[D]. 兰州: 西北师范大学, 2022. |
[Zhang Yuan. Remote Sensing Monitoring of Glacial Lake and Simulation of Glacial Lake Outburst Floods in Niduzangbo Basin, Tibet[D]. Lanzhou: Northwest Normal University, 2022. ] | |
[18] | 王文. 彼得藏布流域冰湖遥感监测和灾害风险评估[D]. 成都: 四川师范大学, 2022. |
[Wang Wen. Remote Sensing Monitoring and Hazard Risk Assessment of Glaclal Lakes in Bedezangbu river Basin[D]. Chengdu: Sichuan Normal University, 2022. ] | |
[19] | 曾磊, 杨太保, 田洪阵. 近40年东帕米尔高原冰川变化及其对气候的响应[J]. 干旱区资源与环境, 2013, 27(5): 144-150. |
[Zeng Lei, Yang Taibao, Tian Hongzhen. Response of glacier variations in the eastern Pamirs plateau to climate change, during the last 40 years[J]. Journal of Arid Land Resources and Environment, 2013, 27(5): 144-150. ] | |
[20] | 贺广丽. 喀喇昆仑-喜马拉雅山冰湖接触型冰川变化与冰湖演化研究[D]. 湘潭: 湖南科技大学, 2021. |
[He Guangli. Lake-ice Contacted Glacier Changes and Glacial Lake Evolution in the Karakorum-Himalayan[D]. Xiangtan: Hunan University of Science and Technology, 2021. ] | |
[21] | 王欣, 吴坤鹏, 蒋亮虹, 等. 近20年天山地区冰湖变化特征[J]. 地理学报, 2013, 68(7): 983-993. |
[Wang Xin, Wu Kunpeng, Jiang Lianghong, et al. Wide expansion of glacial lakes in Tianshan Mountains during 1990-2010[J]. Acta Geographica Sinica, 2013, 68(7): 983-993. ] | |
[22] |
陈晨, 郑江华, 刘永强, 等. 近20年中国阿尔泰山区冰川湖泊对区域气候变化响应的时空特征[J]. 地理研究, 2015, 34(2): 270-284.
doi: 10.11821/dlyj201502007 |
[Zheng Jianghua, Liu Yongqiang, et al. The response of glacial lakes in the Altay Mountains of China to climate change during 1992-2013[J]. Geographical Research, 2015, 34(2): 270-284. ]
doi: 10.11821/dlyj201502007 |
|
[23] | 李宇宸, 张军, 刘陈立. Sentinel-2影像的云南千湖山细小冰湖提取方法[J]. 测绘科学, 2021, 46(4): 114-120. |
[Li Yuchen, Zhang Jun, Liu Chenli. Extraction method of alpine small glacial lake in Qianhu Mountain area of Yunnan Province baesd on Sentinel-2 image[J]. Science of Surveying and Mapping, 2021, 46(4): 114-120. ] | |
[24] |
Zhao H, Wang S, Liu X B, et al. Exploring contrastive representation for weakly-supervised glacial lake Extraction[J]. Remote Sensing, 2023, 15(5): 1456.
doi: 10.3390/rs15051456 |
[25] |
Wang J X, Chen F, Zhang M M, et al. ACFNet: A feature fusion network for glacial lake extraction based on optical and synthetic aperture radar images[J]. Remote Sensing, 2021, 13(24): 5091-5091.
doi: 10.3390/rs13245091 |
[26] |
Su P C, Liu J J, Li Y, et al. Changes in glacial lakes in the Poiqu River basin in the central Himalayas[J]. Hydrology and Earth System Sciences, 2021, 25(11): 5879-5903.
doi: 10.5194/hess-25-5879-2021 |
[27] | Wang Y Z, Li J, Wu L X, et al. Estimating the changes in glaciers and glacial lakes in the Xixabangma Massif, Central Himalayas, between 1974 and 2018 from multisource remote sensing data[J]. Remote Sensing, 2021, 13(19): 13193903. |
[28] |
Ahmed R, Ahmad S T, W Gowhar Farooq, et al. Glacial lake changes and the identification of potentially dangerous glacial lakes (PDGLs) under warming climate in the Dibang River Basin, Eastern Himalaya, India[J]. Geocarto International, 2022, 37(27): 17659-17685.
doi: 10.1080/10106049.2022.2134461 |
[29] |
Rawat M, Ahmed R, Jain S K, et al. Glacier-glacial lake changes and modeling glacial lake outburst flood in Upper Ganga Basin, India[J]. Modeling Earth Systems and Environment, 2022, 9(1): 507-526.
doi: 10.1007/s40808-022-01512-5 |
[30] | 位宏, 徐丽萍, 张正勇, 等. 新疆冰湖溃决灾害风险评价与预警[J]. 科学技术与工程, 2018, 18(29): 13-19. |
[Wei Hong, Xu Liping, Zhang Zhengyong, et al. Evaluation and early warning of Xinjiang glacial lake outburst disaster risk[J]. Science Technology and Engineering, 2018, 18(29): 13-19. ] | |
[31] |
Rinzin S, Zhang G Q, Wangchuk S. Glacial lake area change and potential outburst flood hazard assessment in the Bhutan Himalaya[J]. Frontiers in Earth Science, 2021, 9: 775195.
doi: 10.3389/feart.2021.775195 |
[32] |
Zhang G Q, Yao T D, Xie H J, et al. An inventory of glacial lakes in the Third Pole region and their changes in response to global warming[J]. Global and Planetary Change, 2015, 131: 148-157.
doi: 10.1016/j.gloplacha.2015.05.013 |
[33] | 杜维波. 昆仑山植物多样性格局及其形成机制[D]. 兰州: 兰州大学, 2021. |
[Du Weibo. Patterns of Plant Diversity and Formation Mechanism in the Kunlun Mountains[D]. Lanzhou: Lanzhou University, 2021. ] | |
[34] | 张连成, 胡列群, 李帅, 等. 基于RS的昆仑山区夏季雪线高程变化及其影响因素分析[J]. 冰川冻土, 2019, 41(3): 546-553. |
[Zhang Liancheng, Hu Liequn, Li Shuai, et al. Analyses of variation of summer snowline elevation and its influencing factors in the Kunlun Mountains based on RS, 2001-2015[J]. Journal of Glaciology and Geocryology, 2019, 41(3): 546-553. ] | |
[35] |
彭妍菲, 李忠勤, 姚晓军, 等. 基于多源遥感数据和GEE平台的博斯腾湖面积变化及影响因素分析[J]. 地球信息科学学报, 2021, 23(6): 1131-1153.
doi: 10.12082/dqxxkx.2021.200361 |
[Peng Yanfei, Li Zhongqin, Yao Xiaojun, et al. Area change and cause analysis of Bosten Lake based on multi-source remote sensing data and GEE platform[J]. Journal of Geo-information Science, 2021, 23(6): 1131-1153. ]
doi: 10.12082/dqxxkx.2021.200361 |
|
[36] | 姬梦飞, 汤军, 高贤君, 等. 基于Google Earth Engine的鄱阳湖面积时空变化及驱动因素分析[J]. 水文, 2021, 41(6): 40-47. |
[Ji Mengfei, Tang Jun, Gao Xianjun, et al. Analysis of spatiotemporal changes and driving factors of Poyang Lake area based on Google Earth Engine[J]. Journal of China Hydrology, 2021, 41(6): 40-47. ] | |
[37] | 冉伟杰, 王欣, 郭万钦, 等. 2017—2018年中国西部冰川编目数据集[J]. 中国科学数据, 2021, 6(2): 195-204. |
[Ran Weijie, Wang Xin, Guo Wanqin, et al. A dataset of glacier inventory in Western China during 2017-2018[J]. China Scientific Data, 2021, 6(2): 195-204. ] | |
[38] |
Randy M, Christian H, Holger F, et al. Glacial lake depth and volume estimation based on a large bathymetric dataset from the Cordillera Blanca, Peru[J]. Earth Surface Processes and Landforms, 2020, 45(7): 1510-1527.
doi: 10.1002/esp.v45.7 |
[39] |
杨成德, 王欣, 魏俊峰, 等. 基于3S技术方法的中国冰湖编目[J]. 地理学报, 2019, 74(3): 544-556.
doi: 10.11821/dlxb201903011 |
[Yang Chengde, Wang Xin, Wei Junfeng, et al. Chinese glacial lake inventory based on 3S technology method[J]. Acta Geographica Sinica, 2019, 74(3): 544-556. ]
doi: 10.11821/dlxb201903011 |
|
[40] | 王巨. 基于时序NDVI植被变化检测与驱动因素量化方法研究——以河西地区为例[D]. 兰州: 兰州大学, 2020. |
[Wang Ju. Methods for Detecting Vegetation Changes and Quantifying the Driving Factors Using NDVI Timeseries by Taking Hexi as a Case Area[D]. Lanzhou: Lanzhou University, 2020. ] | |
[41] | 王佃来, 刘文萍, 黄心渊. 基于Sen+Mann-Kendall的北京植被变化趋势分析[J]. 计算机工程与应用, 2013, 49(5): 13-17. |
[Wang Dianlai, Liu Wenping, Huang Xinyuan. Trend analysis in vegetation cover in Beijing based on Sen+Mann-Kendall method[J]. Computer Engineering and Applications, 2013, 49(5): 13-17. ] | |
[42] |
Chen F, Zhang M M, Guo H D, et al. Annual 30 m datas et for glacial lakes in High Mountain Asia from 2008 to 2017[J]. Earth System Science Data, 2021, 13(2): 741-766.
doi: 10.5194/essd-13-741-2021 |
[43] | 殷永胜, 王欣, 刘时银, 等. 1990—2020年中国冰湖变化特征及影响因素[J]. 湖泊科学, 2023, 35(1): 358-367. |
[Yin Yongsheng, Wang Xin, Liu Shiyin, et al. Characteristics and influence factors of the glacial lake changes in China from 1990 to 2020[J]. Journal of Lake Sciences, 2023, 35(1): 358-367. ] | |
[44] | 李成秀. 昆仑山冰川和积雪变化的遥感监测[D]. 兰州: 兰州大学, 2014. |
[Li Chengxiu. Remote Sensing Monitoring of Glacier and Snow Cover Changes in the Kunlun Mountain[D]. Lanzhou: Lanzhou University, 2014. ] | |
[45] | 张亚男, 胡小飞, 潘彦菲. 北祁连山和东昆仑山的地貌特征对比及其对构造抬升的指示意义[J]. 第四纪研究, 2022, 42(3): 809-822. |
[Zhang Yanan, Hu Xiaofei, Pan Yanfei. Comparison of geomorphic characteristics between the Northern Qilian Shan and Eastern Kunlun Shan and its indications for tectonic uplift[J]. Quaternary Sciences, 2022, 42(3): 809-822. ] | |
[46] | 杨宗佶, 董悟凡, 柳金峰, 等. 川西藏东地区冰湖主要成因类型与分布规律[J]. 地质通报, 2021, 40(12): 2071-2079. |
[Yang Zongjie, Dong Wufan, Liu Jinfeng, et al. Genetic types and distribution of glacial lakes in western Sichuan and eastern Tibet[J]. Geological Bulletin of China, 2021, 40(12): 2071-2079. ] | |
[47] |
Yao T D, Li Z G, Yang W, et al. Glacial distribution and mass balance in the Yarlung Zangbo River and its influence on lakes[J]. Chinese Science Bulletin, 2010, 55(20): 2072-2078.
doi: 10.1007/s11434-010-3213-5 |
[48] |
Yao T D, Thompson L, Yang W, et al. Dfferent glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.
doi: 10.1038/nclimate1580 |
[49] |
Shean D E, Bhushan S, Montesano P. A systematic, regional assessment of High Mountain Asia glacier mass balance[J]. Frontiers in Earth Science, 2020, 7(7): 363-382.
doi: 10.3389/feart.2019.00363 |
[50] |
李达, 上官冬辉, 黄维东. 1998-2017年天山麦兹巴赫冰川湖面积变化研究[J]. 冰川冻土, 2020, 42(4): 1126-1134.
doi: 10.7522/j.issn.1000-0240.2019.0308 |
[Li Da, Shangguan Donghui, Huang Weidong. Research on the area change of Lake Merzbacher in the Tianshan Mountains during 1998-2017[J]. Journal of Glaciology and Geocryology, 2020, 42(4): 1126-1134. ]
doi: 10.7522/j.issn.1000-0240.2019.0308 |
|
[51] |
Pandey P, Ali S N, Champati Ray P K. Glacier-glacial Lake interactions and glacial lake development in the central Himalaya, India(1994-2017)[J]. Journal of Earth Science, 2021, 32(6): 1563-1574.
doi: 10.1007/s12583-020-1056-9 |
[52] |
Liu W H, Xie C W, Zhao L, et al. Rapid expansion of lakes in the endorheic basin on the Qinghai-Tibet Plateau since 2000 and its potential drivers[J]. CATENA, 2021, 197: 104942.
doi: 10.1016/j.catena.2020.104942 |
[1] | 赵雨琪, 魏天兴. 1990—2020年黄土高原典型县域植被覆盖变化及影响因素[J]. 干旱区研究, 2024, 41(1): 147-156. |
[2] | 胡广录,陶虎,焦娇,白元儒,陈海志,麻进. 黑河中游正义峡径流变化趋势及归因分析[J]. 干旱区研究, 2023, 40(9): 1414-1424. |
[3] | 马瑶瑶, 史培军, 徐伟, 张钢锋. 干旱区水电站建设运营生态环境影响遥感监测[J]. 干旱区研究, 2023, 40(9): 1498-1508. |
[4] | 周小东, 常顺利, 王冠正, 张毓涛, 喻树龙, 张同文. 天山北坡中段雪岭云杉径向生长对气候变化的响应[J]. 干旱区研究, 2023, 40(8): 1215-1228. |
[5] | 刘笑, 郭鹏, 祁佳峰, 杜文玲, 张茹倩, 张坤. 基于MRSEI模型的阿勒泰市生态环境时空变化及驱动力分析[J]. 干旱区研究, 2023, 40(6): 1014-1026. |
[6] | 赵艳芬, 潘伯荣. 气候变化情景下革苞菊属在中国的潜在地理分布[J]. 干旱区研究, 2023, 40(6): 949-957. |
[7] | 姚春艳, 刘洪鹄, 刘竞. 长江源区1980—2020年水沙变化规律[J]. 干旱区研究, 2023, 40(5): 726-736. |
[8] | 王鹏, 秦思彤, 胡慧蓉. 近30 a拉萨河流域土地利用变化和生境质量的时空演变特征[J]. 干旱区研究, 2023, 40(3): 492-503. |
[9] | 马浩文, 王永芳, 郭恩亮. 基于GEE的翁牛特旗土地沙漠化遥感监测[J]. 干旱区研究, 2023, 40(3): 504-516. |
[10] | 张雨斯,包玉海,贺忠华. 1990—2021年内蒙古遥感生态环境质量变化及趋势分析——以呼伦贝尔市陈巴尔虎旗为例[J]. 干旱区研究, 2023, 40(2): 326-336. |
[11] | 戴君, 胡海珠, 毛晓敏, 张霁. 基于CMIP6多模式预估数据的石羊河流域未来气候变化趋势分析[J]. 干旱区研究, 2023, 40(10): 1547-1562. |
[12] | 姚岱均, 刘康, 惠俞翔, 王凯欣. 天水麦积山油松树轮宽度对气候变化的响应及其机制[J]. 干旱区研究, 2023, 40(1): 19-29. |
[13] | 陈红光, 孟凡浩, 萨楚拉, 罗敏, 王牧兰, 刘桂香. 北方牧区草原内陆河流域径流演变特征及其驱动因素分析[J]. 干旱区研究, 2023, 40(1): 39-50. |
[14] | 张昊琛,萨楚拉,孟凡浩,罗敏,王牧兰,高红豆. 内蒙古地表冻融指数动态变化与驱动因素分析[J]. 干旱区研究, 2022, 39(6): 1996-2008. |
[15] | 王靖文,唐志光,邓刚,胡国杰,桑国庆. 1991—2021年天山融雪末期雪线高度遥感监测研究[J]. 干旱区研究, 2022, 39(5): 1385-1397. |
|