干旱区研究 ›› 2024, Vol. 41 ›› Issue (1): 147-156.doi: 10.13866/j.azr.2024.01.14
收稿日期:
2023-07-05
修回日期:
2023-08-21
出版日期:
2024-01-15
发布日期:
2024-01-24
通讯作者:
魏天兴. E-mail: 作者简介:
赵雨琪(1999-),女,硕士研究生,主要从事生态环境地理研究. E-mail: 基金资助:
Received:
2023-07-05
Revised:
2023-08-21
Online:
2024-01-15
Published:
2024-01-24
摘要:
为探究吉县近30 a植被动态演变规律及其影响因素,本研究基于Landsat影像,结合气象、土地利用、夜间灯光等数据,采用趋势分析、偏相关分析、随机森林、残差分析等方法探究吉县植被覆盖度时空变化特征及气候和人为因素对植被变化的影响。结果显示:(1)1990—2020年研究区植被覆盖度(FVC)整体呈显著上升趋势,FVC年均增长速率约为0.49%,植被质量明显改善。(2)吉县FVC具有明显的“低值-高值”交错分布的空间特征。1990—2020年FVC显著增加区占51%,FVC显著减少区占7%。(3)气候因素对部分FVC高值区和建筑区植被生长起抑制作用,对其余地区植被覆盖起促进作用。将人类活动作为全域影响因素考虑时气候和人类活动对植被动态的贡献率分别为53.43%、46.57%,将其作为局域变量时相对贡献率减少至13.07%。人类活动在特定地区如吉县中部和东部是植被退化的重要影响因素,西侧和南部的植被恢复也与之相关。研究结果可为区域生态修复工作进一步开展提供科学依据。
赵雨琪, 魏天兴. 1990—2020年黄土高原典型县域植被覆盖变化及影响因素[J]. 干旱区研究, 2024, 41(1): 147-156.
ZHAO Yuqi, WEI Tianxing. Changes in vegetation cover and influencing factors in typical counties of the Loess Plateau from 1990 to 2020[J]. Arid Zone Research, 2024, 41(1): 147-156.
表1
影响因素数据来源"
影响因素 | 名称 | 年份 | 数据来源 | 数据类别 | 分辨率 |
---|---|---|---|---|---|
自然因素 | 气温 | 1990—2020年 | 国家青藏高原科学数据中心( | 逐月平均气温数据集 | 1 km |
降水 | 1990—2020年 | 国家青藏高原科学数据中心( | 逐月降水量数据集 | 1 km | |
人为因素 | 夜间灯光指数 | 1990—2020年 | 国家青藏高原科学数据中心( | 中国人工夜间灯光数据集 | 1 km |
土地利用 | 2000年,2018年 | 中国科学院资源环境科学与数据中心( | 土地利用数据集 | 30 m |
[1] | Piao S L, Wang X H, Park T, et al. Characteristics, drivers and feedbacks of global greening[J]. Nature Reviews Earth & Environment, 2020, 1(1): 14-27. |
[2] | 张宝庆, 吴普特, 赵西宁. 近30a黄土高原植被覆盖时空演变监测与分析[J]. 农业工程学报, 2011, 27(4): 287-293. |
[Zhang Baoqing, Wu Pute, Zhao Xining. Detecting and analysis of spatial and temporal variation of vegetation cover in the Loess Plateau during 1982-2009[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(4): 287-293.] | |
[3] |
Chen C, Park T, Wang X H, et al. China and India lead in greening of the world through land-use management[J]. Nature Sustainability, 2019, 2(2): 122-129.
doi: 10.1038/s41893-019-0220-7 pmid: 30778399 |
[4] |
邵全琴, 樊江文, 刘纪远, 等. 重大生态工程生态效益监测与评估研究[J]. 地球科学进展, 2017, 32(11): 1174-1182.
doi: 10.11867/j.issn.1001-8166.2017.11.1174 |
[Shao Quanqin, Fan Jiangwen, Liu Jiyuan, et al. Approaches for monitoring and assessment of ecological benefits of national key ecological projects[J]. Advances in Earth Science, 2017, 32(11): 1174-1182.]
doi: 10.11867/j.issn.1001-8166.2017.11.1174 |
|
[5] |
Li J J, Peng S Z, Li Z. Detecting and attributing vegetation changes on China’s Loess Plateau[J]. Agricultural and Forest Meteorology, 2017, 247: 260-270.
doi: 10.1016/j.agrformet.2017.08.005 |
[6] |
Shi Y, Jin N, Ma X L, et al. Attribution of climate and human activities to vegetation change in China using machine learning techniques[J]. Agricultural and Forest Meteorology, 2020, 294: 108146.
doi: 10.1016/j.agrformet.2020.108146 |
[7] |
Zheng K, Wei J Z, Pei J Y, et al. Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau[J]. Science of The Total Environment, 2019, 660: 236-244.
doi: 10.1016/j.scitotenv.2019.01.022 |
[8] | 谢宝妮. 黄土高原近30年植被覆盖变化及其对气候变化的响应[D]. 杨凌: 西北农林科技大学, 2016. |
[Xie Baoni. Vegetation Dynamics and Climate Change on the Loess Plateau, China: 1982-2014[D]. Yangling: Northwest A & F University, 2016.] | |
[9] |
Yu Y, Zhao W, Martinez-Murillo J F, et al. Loess Plateau: From degradation to restoration[J]. Science of the Total Environment, 2020, 738: 140206.
doi: 10.1016/j.scitotenv.2020.140206 |
[10] |
马炳鑫, 和彩霞, 靖娟利, 等. 1982—2019年中国西南地区植被变化归因研究[J]. 地理学报, 2023, 78(3): 714-728.
doi: 10.11821/dlxb202303013 |
[Ma Bingxin, He Caixia, Jing Juanli, et al. Attribution of vegetation dynamics in Southwest China from 1982 to 2019[J]. Acta Geographica Sinica, 2023, 78(3): 714-728.]
doi: 10.11821/dlxb202303013 |
|
[11] |
尹振良, 冯起, 王凌阁, 等. 2000—2019年中国西北地区植被覆盖变化及其影响因子[J]. 中国沙漠, 2022, 42(4): 11-21.
doi: 10.7522/j.issn.1000-694X.2021.00200 |
[Yin Zhenliang, Feng Qi, Wang Lingge, et al. Vegetation coverage change and its influencing factors across the Northwest region of China during 2000-2019[J]. Journal of Desert Research, 2022, 42(4): 11-21.]
doi: 10.7522/j.issn.1000-694X.2021.00200 |
|
[12] | 燕丹妮, 武心悦, 王博恒, 等. 1982—2015年黄土高原植被变化特征及归因分析[J]. 生态学报, 2023: 1-11. doi: 10.20103/j.stxb.202210233017. |
[Yan Danni, Wu Xinwu, Wang Fuheng, et al. Characteristics and driving forces of changes in vegetation coverage on the Loess Plateau, 1982-2015[J]. Acta Ecological Sinica, 2023: 1-11. doi: 10.20103/j.stxb.202210233017.] | |
[13] | 赵胜楠, 王宇, 乔旭宁. 1987—2021年淮河流域植被覆盖度时空变化与驱动因素分析[J]. 农业机械学报, 2023, 54(4): 180-190. |
[Zhao Shennan, Wang Yu, Qiao Xuning. Spatiotemporal variation and driving factors for FVC in Huaihe River Basin from 1987 to 2021[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(4): 180-190.] | |
[14] |
Yi L, Yu Z, Qian J, et al. Evaluation of the heterogeneity in the intensity of human interference on urbanized coastal ecosystems: Shenzhen (China) as a case study[J]. Ecological Indicators, 2021, 122: 107243.
doi: 10.1016/j.ecolind.2020.107243 |
[15] | 李雪银, 张志强, 孙爱芝. 1982—2021年黄河流域植被覆盖时空演变及影响因素研究[J]. 地球环境学报, 2022, 13(4): 428-436. |
[Li Xueyin, Zhang Zhiqiang, Sun Aizhi. Study on the spatial-temporal evolution and influence factors of vegetation coverage in the Yellow River Basin during 1982-2021[J]. Journal of Earth Environment, 2022, 13(4): 428-436.] | |
[16] | 李依璇. 黄土高原植被覆盖度变化特征及其影响因素[D]. 北京: 北京林业大学, 2021. |
[Li Yixuan. Change Characteristics and Influencing Factors of Vegetation Coverage in the Loess Plateau[D]. Beijing: Beijing Forestry University, 2021.] | |
[17] | 薛智超, 甄霖, 闫慧敏. 基于土地多功能的黄土丘陵沟壑区生态保护与发展情景评估及多主体模拟[J]. 生态学报, 2023, 43(15): 6081-6098. |
[Xue Zhichao, Zhen Lin, Yan Huimin. The scenario assessment of ecological protection and development in the Loess Hilly and Gully area based on land use functions and agent-based modelling[J]. Acta Ecologica Sinica, 2023, 43(15): 6081-6098.] | |
[18] | 杨灿, 魏天兴, 李亦然, 等. 黄土高原典型县域植被覆盖度时空变化及地形分异特征[J]. 生态学杂志, 2021, 40(6): 1830-1838. |
[Yang Can, Wei Tianxing, Li Yiran, et al. Spatiotemporal variations and topographic differentiation of fractional vegetation cover in typical counties of Loess Plateau[J]. Chinese Journal of Ecology, 2021, 40(6): 1830-1838.] | |
[19] | 刘海龙, 唐飞, 丁娅楠, 等. 山西省县域高质量发展与生态系统服务耦合的时空演变特征[J]. 干旱区研究, 2022, 39(4): 1234-1245. |
[Liu Hailong, Tang Fei, Ding Yanan, et al. Temporal and spatial evolution characteristics of the coupling between county high-quality development and ecosystem services in Shanxi Province[J]. Arid Zone Research, 2022, 39(4): 1234-1245.] | |
[20] |
王琳, 卫伟. 黄土高原典型县域生态系统服务变化特征及驱动因素[J]. 生态环境学报, 2023, 32(6): 1140-1148.
doi: 10.16258/j.cnki.1674-5906.2023.06.016 |
[Wang Lin, Wei Wei. Characteristics and driving factors of ecosystem services changes in a typical county of the Loess Plateau[J]. Ecology and Environmental Sciences, 2023, 32(6): 1140-1148.]
doi: 10.16258/j.cnki.1674-5906.2023.06.016 |
|
[21] | 李苗苗, 吴炳方, 颜长珍, 等. 密云水库上游植被覆盖度的遥感估算[J]. 资源科学, 2004, 26(4): 153-159. |
[Li Miaomiao, Wu Bingfang, Yan Changzhen, et al. Estimation of vegetation fraction in the upper Basin of Miyun Reservoir by remote sensing[J]. Resources Science, 2004, 26(4): 153-159.] | |
[22] | 张雷, 王琳琳, 张旭东, 等. 随机森林算法基本思想及其在生态学中的应用——以云南松分布模拟为例[J]. 生态学报, 2014, 34(3): 650-659. |
[Zhang Lei, Wang Linlin, Zhang Xudong, et al. The basic principle of random forest and its applications in ecology: A case study of Pinus yunnanensis[J]. Acta Ecologica Sinica, 2014, 34(3): 650-659.] | |
[23] | 张衡. 基于随机森林的汾河流域草地覆盖变化及其环境因子研究[D]. 山西: 太原师范学院, 2023. |
[Zhang Heng. Study on Grassland Coverage Change and its Environmental Factors in Fenhe River Basin based on Random Forest[D]. Shanxi: Taiyuan Normal University, 2023.] | |
[24] | 宋梦来, 陈海涛, 丁晗, 等. 1990—2020年天津市植被覆盖度时空演变特征及影响因素分析[J]. 水土保持研究, 2023, 30(1): 154-163. |
[Song Menglai, Chen Haitao, Ding Han, et al. Temporal and spatial variation characteristic and influencing factors of vegetation coverage in Tianjin during 1990-2020[J]. Research of Soil and Water Conservation, 2023, 30(1): 154-163.] | |
[25] |
Sun W, Jin Y, Yu J, et al. Integrating satellite observations and human water use data to estimate changes in key components of terrestrial water storage in a semi-arid region of North China[J]. Science of the Total Environment, 2020, 698: 134171.
doi: 10.1016/j.scitotenv.2019.134171 |
[26] |
Ge W, Deng L, Wang F, et al. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016[J]. Science of The Total Environment, 2021, 773: 145648.
doi: 10.1016/j.scitotenv.2021.145648 |
[27] |
赵安周, 田新乐. 基于GEE平台的1986—2021年黄土高原植被覆盖度时空演变及影响因素[J]. 生态环境学报, 2022, 31(11): 2124-2133.
doi: 10.16258/j.cnki.1674-5906.2022.11.003 |
[Zhao Anzhou, Tian Xinle. Spatiotemporal evolution and influencing factors of vegetation coverage in the Loess Plateau from 1986 to 2021 based on GEE platform[J]. Ecology and Environmental Sciences, 2022, 31(11): 2124-2133.]
doi: 10.16258/j.cnki.1674-5906.2022.11.003 |
|
[28] |
Liu J, Li S, Ouyang Z, et al. Ecological and socioeconomic effects of China’s policies for ecosystem services[J]. Proceedings of the National Academy of Sciences, 2008, 105(28): 9477-9482.
doi: 10.1073/pnas.0706436105 |
[29] | 信忠保, 许炯心, 郑伟. 气候变化和人类活动对黄土高原植被覆盖变化的影响[J]. 中国科学: 地球科学, 2007, 37(11): 1504-1514. |
[Xin Zhongbao, Xu Jiongxin, Zheng Wei. Effects of climate change and human activities on vegetation cover change on the Loess Plateau[J]. Scientia Sinica (Terrae), 2007, 37(11): 1504-1514.] | |
[30] |
Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment, 2002, 80(1): 76-87.
doi: 10.1016/S0034-4257(01)00289-9 |
[31] | 李祎君, 王春乙. 气候变化对我国农作物种植结构的影响[J]. 气候变化研究进展, 2010, 6(2): 123-129. |
[Li Yijun, Wang Chunyi. Impacts of climate change on crop planting structure in China[J]. Climate Change Research, 2010, 6(2): 123-129.] | |
[32] |
赵楠, 赵颖慧, 邹海凤, 等. 1990—2020年黑龙江省植被覆盖度的时空变化趋势及驱动力[J]. 应用生态学报, 2023, 34(5): 1320-1330.
doi: 10.13287/j.1001-9332.202305.021 |
[Zhao Nan, Zhao Yinghui, Zou Haifeng, et al. Spatial and temporal trends and drivers of fractional vegetation cover in Heilongjiang Province, China during 1990-2020[J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1320-1330.]
doi: 10.13287/j.1001-9332.202305.021 |
|
[33] |
Kou P, Xu Q, Jin Z, et al. Complex anthropogenic interaction on vegetation greening in the Chinese Loess Plateau[J]. Science of the Total Environment, 2021, 778: 146065.
doi: 10.1016/j.scitotenv.2021.146065 |
[1] | 姚金玺, 肖成志, 张志, 王浪, 张焜. 基于GEE多源遥感数据的干旱区植被地物类型提取[J]. 干旱区研究, 2024, 41(1): 157-168. |
[2] | 胡广录,陶虎,焦娇,白元儒,陈海志,麻进. 黑河中游正义峡径流变化趋势及归因分析[J]. 干旱区研究, 2023, 40(9): 1414-1424. |
[3] | 马瑶瑶, 史培军, 徐伟, 张钢锋. 干旱区水电站建设运营生态环境影响遥感监测[J]. 干旱区研究, 2023, 40(9): 1498-1508. |
[4] | 周小东, 常顺利, 王冠正, 张毓涛, 喻树龙, 张同文. 天山北坡中段雪岭云杉径向生长对气候变化的响应[J]. 干旱区研究, 2023, 40(8): 1215-1228. |
[5] | 李小雨, 贾科利, 魏慧敏, 陈睿华, 王怡婧. 基于随机森林算法的土壤含盐量预测[J]. 干旱区研究, 2023, 40(8): 1258-1267. |
[6] | 张晓敏, 张东梅, 张伟. 人类活动对额尔齐斯河流域碳储量的影响[J]. 干旱区研究, 2023, 40(8): 1333-1345. |
[7] | 孟乘枫, 仲涛, 郑江华, 王南, 刘泽轩, 任祥源. 昆仑山冰湖分布时空特征及驱动力[J]. 干旱区研究, 2023, 40(7): 1094-1106. |
[8] | 赵艳芬, 潘伯荣. 气候变化情景下革苞菊属在中国的潜在地理分布[J]. 干旱区研究, 2023, 40(6): 949-957. |
[9] | 姚春艳, 刘洪鹄, 刘竞. 长江源区1980—2020年水沙变化规律[J]. 干旱区研究, 2023, 40(5): 726-736. |
[10] | 吕锦心, 梁康, 刘昌明, 张仪辉, 刘璐. 无定河流域土地覆被空间分异机制及相关水碳变量变化[J]. 干旱区研究, 2023, 40(4): 563-572. |
[11] | 段雨佳, 何毅, 赵杰, 吴琼. 人类活动对秦岭月河流域径流变化的影响分析[J]. 干旱区研究, 2023, 40(4): 605-614. |
[12] | 李鑫磊, 李瑞平, 王秀青, 王思楠, 王成坤. 基于地理探测器的河套灌区林草植被覆盖度时空变化与驱动力分析[J]. 干旱区研究, 2023, 40(4): 623-635. |
[13] | 王怡恩, 饶良懿. 气候因素和人类活动对砒砂岩区植被净初级生产力的影响[J]. 干旱区研究, 2023, 40(12): 1982-1995. |
[14] | 裴宏泽, 赵亚超, 张廷龙. 2000—2020年黄土高原NEP时空格局与驱动力[J]. 干旱区研究, 2023, 40(11): 1833-1844. |
[15] | 戴君, 胡海珠, 毛晓敏, 张霁. 基于CMIP6多模式预估数据的石羊河流域未来气候变化趋势分析[J]. 干旱区研究, 2023, 40(10): 1547-1562. |
|