Arid Zone Research ›› 2023, Vol. 40 ›› Issue (6): 1002-1013.doi: 10.13866/j.azr.2023.06.15
• Ecology and Environment • Previous Articles Next Articles
Received:
2022-10-26
Revised:
2023-03-09
Online:
2023-06-15
Published:
2023-06-21
QI Runze, PAN Jinghu. Spatial and temporal evolution of ecological vulnerability and its influencing factors in the Hehuang area[J].Arid Zone Research, 2023, 40(6): 1002-1013.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Evaluation index system of ecological vulnerability in Hehuang area"
子目标层 | 要素层 | 指标层 | ||||||
---|---|---|---|---|---|---|---|---|
编号 | 内容 | 编号 | 内容 | 编号 | 内容 | 作用方向 | ||
A1 | 暴露度 | B1 | 生态胁迫 | C1 | 干旱指数 | 正向 | ||
C2 | 水土流失指数 | 正向 | ||||||
C3 | 沙漠化指数 | 正向 | ||||||
B2 | 人类干扰 | C4 | 人口密度 | 正向 | ||||
C5 | 夜间灯光强度 | 正向 | ||||||
C6 | 土地利用强度 | 正向 | ||||||
A2 | 敏感性 | B3 | 地表因子 | C7 | 土壤有机质含量 | 负向 | ||
C8 | 景观多样性 | 负向 | ||||||
C9 | 景观破碎度 | 正向 | ||||||
B4 | 地形因子 | C10 | 海拔 | 正向 | ||||
C11 | 坡度 | 正向 | ||||||
B5 | 气象因子 | C12 | 年均气温 | 正向 | ||||
C13 | 年降水量 | 负向 | ||||||
A3 | 适应力 | B6 | 自我调节 | C14 | 植被净初级生产力 | 负向 | ||
C15 | 植被覆盖度 | 负向 | ||||||
B7 | 环保措施 | C16 | 生境质量指数 | 负向 |
Tab. 2
Weight of each evaluation index of ecological vulnerability"
评价指标 | 2000年 | 2005年 | 2010年 | 2015年 | 2020年 |
---|---|---|---|---|---|
干旱指数 | 0.2298 | 0.2762 | 0.2695 | 0.2501 | 0.2590 |
水土流失指数 | 0.1572 | 0.2238 | 0.1935 | 0.2367 | 0.1868 |
沙漠化指数 | 0.2649 | 0.2584 | 0.2525 | 0.2883 | 0.2689 |
人口密度 | 0.2061 | 0.2165 | 0.2144 | 0.2083 | 0.2299 |
夜间灯光强度 | 0.2582 | 0.2434 | 0.2617 | 0.2459 | 0.2681 |
用地强度 | 0.2415 | 0.2652 | 0.2603 | 0.2633 | 0.2753 |
土壤有机质含量 | 0.1884 | 0.1723 | 0.1837 | 0.1864 | 0.1874 |
景观多样性 | 0.2738 | 0.2453 | 0.2263 | 0.2376 | 0.2265 |
景观破碎度 | 0.2476 | 0.2452 | 0.2441 | 0.2514 | 0.2348 |
海拔 | 0.2783 | 0.2657 | 0.2733 | 0.2679 | 0.2766 |
坡度 | 0.1812 | 0.1774 | 0.1814 | 0.1764 | 0.1899 |
年均气温 | 0.2922 | 0.3165 | 0.3092 | 0.2904 | 0.2890 |
年降水量 | 0.2026 | 0.2275 | 0.2062 | 0.2104 | 0.2092 |
植被净初级生产力 | 0.2653 | 0.2382 | 0.2513 | 0.2466 | 0.2433 |
植被覆盖度 | 0.2406 | 0.2731 | 0.2886 | 0.2709 | 0.2766 |
生境质量指数 | 0.3332 | 0.3084 | 0.3275 | 0.3241 | 0.3295 |
Tab. 3
Classification standard of ecological vulnerability in Hehuang area"
生态脆弱性程度 | 等级 | 生态脆弱性指数标准化值 | 特征 |
---|---|---|---|
微度脆弱 | Ⅰ | [0, 2.0] | 区域内植被茂盛,承受压力小,抗外界干扰能力和自我恢复能力强,生态脆弱性低 |
轻度脆弱 | Ⅱ | (2.0, 4.0] | 区域内植被覆盖度适中,承受压力较小,抗外界干扰能力和自我恢复能力较强,生态脆弱性较低 |
中度脆弱 | Ⅲ | (4.0, 6.0] | 区域内植被较少,承受压力接近生态阈值,对外界干扰较为敏感,自我恢复能力较弱,生态脆弱性较高 |
重度脆弱 | Ⅳ | (6.0, 8.0] | 区域内植被稀疏,承受压力大,对外界干扰敏感性强,受损后恢复难度大,生态脆弱性高 |
极度脆弱 | Ⅴ | (8.0, 10.0] | 区域内植被稀少甚至没有,承受压力极大,对外界干扰极度敏感,受损后恢复难度极大,生态脆弱性极高 |
Tab. 4
Classification of evolution of ecological vulnerability"
整体转换类型 | 转换编码 | 分类依据 |
---|---|---|
持续稳定型 | 111、222、333、444、555 | 2000年、2010年和2020年间的生态脆弱性等级值须保持相等 |
波动稳定型 | 121、131、141、212、232、242、252、313、323、343、353、414、424、434、454、535、545 | 2000年与2020年的生态脆弱性等级值须相等,2010年生态脆弱性等级值可增加或减少,也可以保持不动 |
持续增长型 | 123、234、235、345 | 2000年、2010年和2020年间的生态脆弱性等级值须呈现增加趋势 |
波动增长型 | 112、113、114、122、132、133、144、142、213、214、215、223、224、225、233、243、244、254、314、315、324、325、334、335、344、425、435、445、455 | 2020年生态脆弱性等级值须高于2000年,2010年生态脆弱性等级值可增加或减少,也可以保持不变 |
持续减少型 | 543、542、541、532、432、431、421、321、 | 2000年、2010年和2020年间的生态脆弱性等级值须呈递减趋势 |
波动减少型 | 554、553、552、544、534、533、523、453、452、443、442、441、433、423、422、413、411、352、342、341、332、331、322、312、311、251、241、231、221、211 | 2020年生态脆弱性等级值须低于2000年,2010年生态脆弱性等级值可增加或减少,也可以保持不变 |
Tab. 5
Geodetector results of 16 detection indicators of ecological vulnerability"
2000年 | 2005年 | 2010年 | 2015年 | 2020年 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
q | P | q | P | q | P | q | P | q | P | |||||
干旱指数 | 0.409 | 0 | 0.363 | 0 | 0.352 | 0 | 0.379 | 0 | 0.380 | 0 | ||||
水土流失指数 | 0.273 | 0 | 0.253 | 0 | 0.243 | 0 | 0.267 | 0 | 0.251 | 0 | ||||
沙漠化指数 | 0.614 | 0 | 0.581 | 0 | 0.565 | 0 | 0.570 | 0 | 0.551 | 0 | ||||
人口密度 | 0.144 | 0 | 0.141 | 0 | 0.151 | 0 | 0.155 | 0 | 0.167 | 0 | ||||
夜间灯光强度 | 0.132 | 0 | 0.142 | 0 | 0.122 | 0 | 0.131 | 0 | 0.156 | 0 | ||||
用地强度 | 0.198 | 0 | 0.196 | 0 | 0.196 | 0 | 0.198 | 0 | 0.229 | 0 | ||||
土壤有机质含量 | 0.336 | 0 | 0.327 | 0 | 0.293 | 0 | 0.275 | 0 | 0.305 | 0 | ||||
景观多样性 | 0.116 | 0 | 0.121 | 0 | 0.137 | 0 | 0.120 | 0 | 0.131 | 0 | ||||
景观破碎度 | 0.109 | 0 | 0.102 | 0 | 0.104 | 0 | 0.101 | 0 | 0.102 | 0 | ||||
海拔 | 0.365 | 0 | 0.343 | 0 | 0.327 | 0 | 0.308 | 0 | 0.318 | 0 | ||||
坡度 | 0.060 | 0 | 0.062 | 0 | 0.049 | 0 | 0.038 | 0 | 0.051 | 0 | ||||
年均气温 | 0.309 | 0 | 0.301 | 0 | 0.273 | 0 | 0.234 | 0 | 0.285 | 0 | ||||
年降水量 | 0.208 | 0 | 0.211 | 0 | 0.301 | 0 | 0.330 | 0 | 0.283 | 0 | ||||
植被净初级生产力 | 0.591 | 0 | 0.561 | 0 | 0.586 | 0 | 0.593 | 0 | 0.605 | 0 | ||||
植被覆盖度 | 0.759 | 0 | 0.703 | 0 | 0.691 | 0 | 0.715 | 0 | 0.661 | 0 | ||||
生境质量指数 | 0.392 | 0 | 0.353 | 0 | 0.382 | 0 | 0.363 | 0 | 0.342 | 0 |
Tab. 6
Ecological vulnerability zoning statistics"
生态脆弱性分区 | 面积/km2 | 转换编码 | 分区依据 | 解释说明 |
---|---|---|---|---|
生态核心保护区 | 33111 | 111,222 | 生态脆弱性分级常年为微度脆弱或轻度脆弱区域 | 对于5种生态分区划定依据是基于时间的先后顺序,即由2000年转向2020年因生态恢复关注区、生态优先治理区以及生态重点监测区的转换编码过多,故在表格中未进行一一列举 |
生态综合治理区 | 24501 | 333,444,555 | 生态脆弱性分级常年为中度脆弱、重度脆弱或极度脆弱区域 | |
生态恢复关注区 | 85009 | 211,221,231,241,251,311,312,321,322,331,332等 | 生态脆弱性由高脆弱性分级转向低脆弱性分级,生态脆弱性降低区域 | |
生态优先治理区 | 10558 | 112,113,114,122,123,132,133,142,144,213,214等 | 生态脆弱性由低脆弱性分级转向高脆弱性分级,生态脆弱性升高区域 | |
生态重点监测区 | 6110 | 121,131,141,212,232,242,252,313,323,343,353等 | 生态脆弱性分级在动态变化,但总体分级未发生改变区域 |
[1] | 张震, 徐佳慧, 高琦, 等. 黄河流域经济高质量发展水平差异分析[J]. 科学管理研究, 2022, 40(1): 100-109. |
[Zhang Zhen, Xu Jiahui, Gao Qi, et al. Analysis on the difference of economic high-quality development level in the Yellow River Basin[J]. Scientific Management Research, 2022, 40(1): 100-109.] | |
[2] | 王慧. 黄河内蒙古段十大孔兑生态脆弱性演变及驱动力分析[D]. 呼和浩特: 内蒙古农业大学, 2020. |
[Wang Hui. Eco-environment Vulnerability Evolution of the Seasonal River in Inner Mongolain Reach of the Yellow River and its Driving Force Analysis[D]. Hohhot: Inner Mongolia Agricultural University, 2020.] | |
[3] | 田义超, 梁铭忠, 任志远. 城乡过渡区土地利用变化模拟与生态风险时空异质性特征[J]. 环境科学研究, 2013, 26(5): 540-548. |
[Tian Yichao, Liang Mingzhong, Ren Zhiyuan. Simulation of land use change and temporal-spatial heterogeneity of eco-risk in urban fringe[J]. Research of Environmental Sciences, 2013, 26(5): 540-548.] | |
[4] |
黄万状, 石培基. 河湟地区乡村聚落位序累积规模模型的实证研究[J]. 地理学报, 2021, 76(6): 1489-1503.
doi: 10.11821/dlxb202106012 |
[Huang Wanzhuang, Shi Peiji. An empirical study on rank cumulative size model of rural settlements in the Hehuang area[J]. Acta Geographica Sinica, 2021, 76(6): 1489-1503.]
doi: 10.11821/dlxb202106012 |
|
[5] | 于悦. 地域环境适应下青海河湟地区庄廓聚落空间形态研究[D]. 青岛: 青岛理工大学, 2019. |
[Yu Yue. Study on the Spatial Form of Zhuangkuo Settlements in Hehuang Area of Qinghai Province under the Adaptation of Regional Environment[D]. Qingdao: Qingdao University of Technology, 2019.] | |
[6] |
钟晓娟, 孙保平, 赵岩, 等. 基于主成分分析的云南省生态脆弱性评价[J]. 生态环境学报, 2011, 20(1): 109-113.
doi: 10.16258/j.cnki.1674-5906(2011)01-0109-05 |
[Zhong Xiaojuan, Sun Baoping, Zhao Yan, et al. Ecological vulnerability evaluation based on principal component analysis in Yunnan province[J]. Ecology and Environmental Sciences, 2011, 20(1): 109-113.]
doi: 10.16258/j.cnki.1674-5906(2011)01-0109-05 |
|
[7] |
Zhang X Y, Liu K, Wang S D. Spatiotemporal evolution of ecological vulnerability in the Yellow River Basin under ecological restoration initiatives[J]. Ecological Indicators, 2022, 135: 108586.
doi: 10.1016/j.ecolind.2022.108586 |
[8] |
Yang X, Liu S, Jia C, et al. Vulnerability assessment and management planning for the ecological environment in urban wetlands[J]. Journal of Environmental Management, 2021, 298: 113540.
doi: 10.1016/j.jenvman.2021.113540 |
[9] | 陈枫, 李泽红, 董锁成, 等. 基于VSD模型的黄土高原丘陵沟壑区县域生态脆弱性评价——以甘肃省临洮县为例[J]. 干旱区资源与环境, 2018, 32(11): 74-80. |
[Chen Feng, Li Zehong, Dong Suocheng, et al. Evaluation of ecological vulnerability in gully-hilly region of Loess Plateau based on VSD model: A case of Lintao county[J]. Journal of Arid Land Resources and Environment, 2018, 32(11): 74-80.] | |
[10] | 王鹏, 赵微, 柯新利. 基于SRP模型的潜江市生态脆弱性评价及时空演变[J]. 水土保持研究, 2021, 28(5): 347-354. |
[Wang Peng, Zhao Wei, Ke Xinli. Evaluation and spatiotemporal evolution of ecological vulnerability of Qianjiang based on SRP model[J]. Research of Soil and Water Conservation, 2021, 28(5): 347-354.] | |
[11] | 薛联青, 王晶, 魏光辉. 基于PSR模型的塔里木河流域生态脆弱性评价[J]. 河海大学学报(自然科学版), 2019, 47(1): 13-19. |
[Xue Lianqing, Wang Jing, Wei Guanghui. Dynamic evaluation of the ecological vulnerability based on PSR modeling for the Tarim River Basin in Xinjiang[J]. Journal of Hohai University(Natural Sciences), 2019, 47(1): 13-19.] | |
[12] |
Guo B, Luo W, Zang W. Spatial-temporal shifts of ecological vulnerability of Karst Mountain ecosystem-impacts of global change and anthropogenic interference[J]. Science of The Total Environment, 2020, 741: 140256.
doi: 10.1016/j.scitotenv.2020.140256 |
[13] |
Boori M S, Choudhary K, Paringer R, et al. Using RS/GIS for spatiotemporal ecological vulnerability analysis based on DPSIR framework in the Republic of Tatarstan, Russia[J]. Ecological Informatics, 2022, 67: 101490.
doi: 10.1016/j.ecoinf.2021.101490 |
[14] | 孙桂丽, 陆海燕, 郑佳翔, 等. 新疆生态脆弱性时空演变及驱动力分析[J]. 干旱区研究, 2022, 39(1): 258-269. |
[Sun Guili, Lu Haiyan, Zheng Jiaxiang, et al. Spatio-temporal variation of ecological vulnerability in Xinjiang and driving force analysis[J]. Arid Zone Research, 2022, 39(1): 258-269.] | |
[15] |
Gong J, Jin T T, Cao E J, et al. Is ecological vulnerability assessment based on the VSD model and AHP-Entropy method useful for loessial forest landscape protection and adaptative management? A case study of Ziwuling Mountain Region, China[J]. Ecological Indicators, 2022, 143: 109379.
doi: 10.1016/j.ecolind.2022.109379 |
[16] |
Polsky C, Neff R, Yarnal B. Building comparable global change vulnerability assessments: The vulnerability scoping diagram[J]. Global Environmental Change, 2007, 17(34): 472-485.
doi: 10.1016/j.gloenvcha.2007.01.005 |
[17] | 李珍珍. 甘肃省生态脆弱性时空演变及与土地利用关系研究[D]. 兰州: 兰州大学, 2019. |
[Li Zhenzhen. Esearch on the Spatiotemporal Variation of Ecological Vulnerability and the Relationshipof Land Use in Gansu Province[D]. Lanzhou: Lanzhou University, 2019.] | |
[18] |
Xia M, Jia K, Zhao W W, et al. Spatio-temporal changes of ecological vulnerability across the Qinghai-Tibetan Plateau[J]. Ecological Indicators, 2021, 123: 107274.
doi: 10.1016/j.ecolind.2020.107274 |
[19] | 王顺久, 杨志峰, 丁晶. 关中平原地下水资源承载力综合评价的投影寻踪方法[J]. 资源科学, 2004, 26(6): 104-110. |
[Wang Shunjiu, Yang Zhifeng, Ding Jing. Projection pursuit method of comprehensive evaluation on groundwater resources carrying capacity in Guanzhong plain[J]. Resources Science, 2004, 26(6): 104-110.] | |
[20] | 霍童, 张序, 周云, 等. 基于暴露-敏感-适应性模型的生态脆弱性时空变化评价及相关分析——以中国大运河苏州段为例[J]. 生态学报, 2022, 42(6): 2281-2293. |
[Huo Tong, Zhang Xu, Zhou Yun, et al. Evaluation and correlation analysis of spatio-temporal changes of ecological vulnerability based on VSD model: A case in Suzhou section, Grand Canal of China[J]. Acta Ecologica Sinica, 2022, 42(6): 2281-2293.] | |
[21] | 戢晓峰, 谢军, 伍景琼. 考虑不同侵扰场景的高速公路韧性评估方法[J]. 中国安全生产科学技术, 2019, 15(1): 12-19. |
[Ji Xiaofeng, Xie Jun, Wu Jingqiong. Assessment method of expressway resilience considering different intrusion scenes[J]. Journal of Safety Science and Technology, 2019, 15(1): 12-19.] | |
[22] | 马骏, 李昌晓, 魏虹, 等. 三峡库区生态脆弱性评价[J]. 生态学报, 2015, 35(21): 7117-7129. |
[Ma Jun, Li Changxiao, Wei Hong, et al. Dynamic evaluation of ecological vulnerability in the Three Gorges Reservoir Region in Chongqing Municipality, China[J]. Acta Ecologica Sinica, 2015, 35(21): 7117-7129.] | |
[23] | 孙宇晴, 杨鑫, 郝利娜. 基于 SRP 模型的川藏线 2010—2020 年生态脆弱性时空分异与驱动机制研究[J]. 水土保持通报, 2022, 41(6): 201-208. |
[Sun Yuqing, Yang Xin, Hao Lina. Spatial and temporal differentiation and driving mechanism of ecological vulnerability along Sichuan-Tibet Railway during 2010-2020 based on SRP model[J]. Bulletin of Soil and Water Conservation, 2022, 41(6): 201-208.] | |
[24] | 王志杰, 苏嫄. 南水北调中线汉中市水源地生态脆弱性评价与特征分析[J]. 生态学报, 2018, 38(2): 432-442. |
[Wang Zhijie, Su Yuan. Analysis of eco-environmental vulnerability characteristics of Hanzhong City, near the water source midway along the route of the south-to-north water transfer project, China[J]. Acta Ecologica Sinica, 2018, 38(2): 432-442.] | |
[25] | 郭靖娴, 刘婷, 齐小娟, 等. 时空扫描法在浙江省食源性疾病时空聚集性分析中的应用[J]. 中国预防医学杂志, 2020, 21(11): 1171-1177. |
[Guo Jingxian, Liu Ting, Qi Xiaojuan, et al. Application of spatio-temporal scanning in the analysis of spatio-temporal clusters of foodborne diseases in Zhejiang province[J]. Chinese Preventive Medicine, 2020, 21(11): 1171-1177.] | |
[26] | 张学渊, 魏伟, 周亮, 等. 西北干旱区生态脆弱性时空演变分析[J]. 生态学报, 2021, 41(12): 4707-4719. |
[Zhang Xueyuan, Wei Wei, Zhou Liang, et al. Analysis on spatio-temporal evolution of ecological vulnerability in arid areas of Northwest China[J]. Acta Ecologica Sinica, 2021, 41(12): 4707-4719.] | |
[27] | 张欣, 潘竟虎. 中国城市蔓延时空动态识别及驱动因素探测[J]. 人文地理, 2021, 36(4): 114-125. |
[Zhang Xin, Pan Jinghu. Identification of spatio-temporal dynamics and detection for driving factors of urban sprawl in China[J]. Human Geography, 2021, 36(4): 114-125.] | |
[28] |
张良侠, 樊江文, 张海燕, 等. 黄土高原地区生态脆弱性时空变化及其驱动因子分析[J]. 环境科学, 2022, 43(9): 4902-4910.
doi: 10.1021/es900179s |
[Zhang Liangxia, Fan Jiangwen, Zhang Haiyan, et al. Spatial-temporal variations and their driving forces of the ecological vulnerability in the Loess Plateau[J]. Environmental Science, 2022, 43(9): 4902-4910.]
doi: 10.1021/es900179s |
|
[29] | 石三娥. 西北五省生态环境脆弱性时空演变研究[D]. 兰州: 西北师范大学, 2019. |
[Shi San’e. Study on the Spatial and Temporal Evolution of Ecological Environment Vulnerability in Five Provinces in Northwest China[D]. Lanzhou: Northwest Normal University, 2019.] | |
[30] | 吴恒飞, 陈克龙, 张乐乐. 气候变化下青海湖流域生态健康评价研究[J]. 生态科学, 2022, 41(4): 41-48. |
[Wu Hengfei, Chen Kelong, Zhang Lele. Study on ecological health evaluation of Qinghai Lake Basin under climate change[J]. Ecological Science, 2022, 41(4): 41-48.] |
[1] | TANG Kexin, GUO Jianbin, HE Liang, CHEN Lin, WAN Long. Characteristics of the spatial and temporal evolution of Gross Primary Productivity and its influencing factors in China’s drylands [J]. Arid Zone Research, 2024, 41(6): 964-973. |
[2] | LIU Rulong, ZHAO Yuanyuan, CHEN Guoqing, CHI Wenfeng, LIU Zhengjia. Assessment of habitat quality in the Yellow River Basin in Inner Mongolia from 1990 to 2020 [J]. Arid Zone Research, 2024, 41(4): 674-683. |
[3] | CUI Yang,WANG Dai,GAO Ruina,AN Xingqin. Atmospheric environmental capacity characteristics and influencing factors of Ningxia over the past 60 years [J]. Arid Zone Research, 2023, 40(6): 885-895. |
[4] | XU Tao, YU Huan, KONG Bo, QIU Xia, HU Mengke, LING Pengfei. Spatial heterogeneity of gravel size in Northern Tibetan Plateau [J]. Arid Zone Research, 2023, 40(2): 292-302. |
[5] | WU Xueqing, ZHANG Lele, GAO Liming, LI Yankun, LIU Xuanchen. Dynamic change and driving force of net primary productivity in Qinghai Lake Basin [J]. Arid Zone Research, 2023, 40(11): 1824-1832. |
[6] | ZHAO Mengen,YAN Qingwu,LIU Zhengting,WANG Wenming,LI Gui’e,WU Zhenhua. Analysis of temporal and spatial evolution and influencing factors of soil erosion in Ordos City [J]. Arid Zone Research, 2022, 39(6): 1819-1831. |
[7] | WANG Qikun,WU Wei,YANG Xueqi,SANG Guoqing. Spatial-temporal changes and driving factors of habitat quality in Shaanxi Province during the past 20 years [J]. Arid Zone Research, 2022, 39(5): 1684-1694. |
[8] | ZHANG Yunxia,ZHANG Jinxi,GONG Jie. Landscape pattern vulnerability and its influencing factors on a semi-arid lake basin: A case study of Liangcheng County [J]. Arid Zone Research, 2022, 39(4): 1259-1269. |
[9] | SUN Guili,LU Haiyan,ZHENG Jiaxiang,LIU Yanyan,RAN Yajun. Spatio-temporal variation of ecological vulnerability in Xinjiang and driving force analysis [J]. Arid Zone Research, 2022, 39(1): 258-269. |
[10] | Pariha Helili,ZAN Mei,Alimjan Kasim. Remote sensing evaluation of ecological environment in Urumqi City and analysis of driving factors [J]. Arid Zone Research, 2021, 38(5): 1484-1496. |
[11] | CHEN Zhenqi,ZHANG Jing,ZHANG Yilong,LIU Rui. Spatio-temporal patterns variation of ecological vulnerability in Otindag Sandy Land based on a vulnerability scoping diagram [J]. Arid Zone Research, 2021, 38(5): 1464-1473. |
[12] | CHANG Mengdi,WANG Xinjun,LI Na,YAN Linan,MA Ke,LI Juyan. Study on temporal and spatial variation characteristics and influencing factors of hydraulic erosion in the middle of the northern slope of Tianshan Mountains based on CSLE model [J]. Arid Zone Research, 2021, 38(4): 939-949. |
[13] | LI Yujiao,CHEN Yaning,ZHANG Qifei,FANG Gonghuan. Analysis of the change in water level and its influencing factors on Bosten Lake from 1960 to 2018 [J]. Arid Zone Research, 2021, 38(1): 48-58. |
[14] | LIU Lizhen,PANG Danbo,WANG Xinyun,CHEN Lin,LI Xuebin,WU Mengyao,LIU Bo,ZHU Zhongyou,LI Jingyao,WANG Jifei. Application of stable carbon isotope technique in soil organic carbon research: A literature review [J]. Arid Zone Research, 2021, 38(1): 123-132. |
|