Arid Zone Research ›› 2022, Vol. 39 ›› Issue (3): 667-675.doi: 10.13866/j.azr.2022.03.01
Received:
2021-12-06
Revised:
2022-01-13
Online:
2022-05-15
Published:
2022-05-30
ZHANG Dongliang. Changes of pollen taxa diversity in the arid Central Asia under the Holocene Westerlies Mode: A case study of the Altai Mountains[J].Arid Zone Research, 2022, 39(3): 667-675.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Steffen W, Rockström J, Richardson K, et al. Trajectories of the earth system in the Anthropocene[J]. Proceedings of the National Academy of Sciences, 2018, 115(33): 8252-8259.
doi: 10.1073/pnas.1810141115 |
[2] |
Dawson T P, Jackson S T, House J I, et al. Beyond predictions: Biodiversity conservation in a changing climate[J]. Science, 2011, 332(6025): 53-58.
doi: 10.1126/science.1200303 |
[3] | Urban M C, Bocedi G, Hendry A P, et al. Improving the forecast for biodiversity under climate change[J]. Science, 2016, 353(6304): 1-10. |
[4] | Foden W B, Young B E, Akçakaya H R, et al. Climate change vulnerability assessment of species[J]. Wiley Interdisciplinary Reviews: Climate Change, 2019, 10(1): e551. |
[5] | Fordham D A, Jackson S T, Brown S C, et al. Using paleo-archives to safeguard biodiversity under climate change[J]. Science, 2020, 369: eabc5654. |
[6] |
Weng C Y, Hooghiemstra H, Duivenvoorden J F. Challenges in estimating past plant diversity from fossil pollen data: Statistical assessment, problems, and possible solutions[J]. Divers Distribution, 2006, 12: 310-318.
doi: 10.1111/j.1366-9516.2006.00230.x |
[7] |
Liu H Y, Park Williams A, Allen C D, et al. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia[J]. Global Change Biology, 2013, 19: 2500-2510.
doi: 10.1111/gcb.12217 |
[8] |
Weng C, Hooghiemstra H, Duivenvoorden J F. Response of pollen diversity to the climate-driven altitudinal shift of vegetation in the Colombian Andes[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362(1478): 253-262.
doi: 10.1098/rstb.2006.1985 |
[9] |
Franco A M, Hill J K, Kitschke C, et al. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries[J]. Global Change Biology, 2006, 12: 1545-1553.
doi: 10.1111/j.1365-2486.2006.01180.x |
[10] |
Huang J P, Yu H, Guan X D, et al. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 2016, 6: 166-171.
doi: 10.1038/nclimate2837 |
[11] |
Zhang D L, Feng Z D. Holocene climate variations in the Altai Mountains and the surrounding areas: A synthesis of pollen records[J]. Earth-Science Reviews, 2018, 185: 847-869.
doi: 10.1016/j.earscirev.2018.08.007 |
[12] |
Chen F H, Yu Z, Yang M, et al. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27: 351-364.
doi: 10.1016/j.quascirev.2007.10.017 |
[13] |
Cheng Y, Liu H, Wang H, et al. Climate-driven Holocene migration of forest-steppe ecotone in the Tien Mountains[J]. Forests, 2020, 11(11): 1139.
doi: 10.3390/f11111139 |
[14] | 张芸, 孔昭宸, 阎顺, 等. 新疆天山北坡地区中晚全新世古生物多样性特征[J]. 植物生态学报, 2005, 29(5): 836-844. |
[ Zhang Yun, Kong Zhaocheng, Yan Shun, et al. Paleo-biodiversity at the northern piedmont of Tianshan Mountains in Xinjiang during the Middle to Late Holocene[J]. Acta Phytoecologica Sinica, 2005, 29(5): 836-844. ] | |
[15] | Zhang D L, Chen X, Li Y M, et al. Holocene moisture variations in the arid Central Asia: New evidence from the southern Altai Mountains of China[J]. Science of the Total Environment, 2020, 735: 139545. |
[16] | Wang W, Zhang D L. Holocene vegetation evolution and climatic dynamics inferred from an ombrotrophic peat sequence in the southern Altai Mountains within China[J]. Global and Planetary Change, 2019, 172: 10-22. |
[17] |
Zhang D L, Chen X, Li Y M, et al. Holocene vegetation dynamics and associated climate changes in the Altai Mountains of the arid Central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 550: 109744.
doi: 10.1016/j.palaeo.2020.109744 |
[18] |
Feng Z D, Sun A Z, Abdusalih N, et al. Vegetation changes and associated climatic changes in the southern Altai Mountains within China during the Holocene[J]. Holocene, 2017, 27(5): 683-693.
doi: 10.1177/0959683616670469 |
[19] |
Huang X Z, Peng W, Rudaya N, et al. Holocene vegetation and climate dynamics in the Altai Mountains and surrounding areas[J]. Geophysical Research Letters, 2018, 45(13): 6628-6636.
doi: 10.1029/2018GL078028 |
[20] |
Zhang D L, Yang Y P, Ran M, et al. Vegetation dynamics and its response to climate change during the past 2000 years in the Altai Mountains, northwestern China[J]. Frontiers of Earth Science, 2021, doi.10.1007/s11707-021-0906-9
doi: doi.10.1007/s11707-021-0906-9 |
[21] | Zhang D L, Lan B, Yang Y P. Comparison of precipitation variations at different time scales in the northern and southern Altai Mountains[J]. Acta Geographica Sinica, 2017, 72(9): 1569-1579. |
[22] |
Blyakharchuk T, Chernova N. Vegetation and climate in the western Sayan Mts according to pollen data from Lugovoe Mire as a background for prehistoric cultural change in southern Middle Siberia[J]. Quaternary Science Reviews, 2013, 75: 22-42.
doi: 10.1016/j.quascirev.2013.05.017 |
[23] |
袁国映. 阿尔泰山西部地区的垂直自然带[J]. 地理学报, 1986, 41(1): 32-40.
doi: 10.11821/xb198601004 |
[ Yuan Guoying. The vertical zonation of the western Altay MTS[J]. Acta Geographica Sinica, 1986, 41(1): 32-40. ]
doi: 10.11821/xb198601004 |
|
[24] | 李泉, 赵艳. 基于孢粉组合定量重建古植物多样性的方法与进展[J]. 第四纪研究, 2018, 38(4): 821-829. |
[ Li Quan, Zhao Yan. Quantitative methods and progress of paleofloristic diversity reconstruction based on pollen assemblages[J]. Quaternary Sciences, 2018, 38(4): 821-829. ] | |
[25] |
Prentice I, Cramer W, Harrison S, et al. A global Biome model based on plant physiology and dominance, soil properties and climate[J]. Journal of Biogeograph, 1992, 19(2): 117-134.
doi: 10.2307/2845499 |
[26] |
Prentice I, Guiot J, Huntley B, et al. Reconstructing biomes from palaeoecological data: A general method and its application to European pollen data at 0 and 6 ka[J]. Climate Dynamics, 1996, 12 (3): 185-194.
doi: 10.1007/BF00211617 |
[27] |
Walker M J C, Berkelhammer M, Björck S, et al. Formal subdivision of the Holocene series/epoch: A discussion paper by a working group of INTIMATE (integration of ice core, marine and terrestrial records) and the subcommission on Quaternary stratigraphy (international commission on stratigraphy)[J]. Journal of Quaternary Science, 2012, 27: 649-659.
doi: 10.1002/jqs.2565 |
[28] |
Marcott S, Shakun J, Clark P, et al. A reconstruction of regional and global temperature for the past 11300 years[J]. Science, 2013, 339: 1198-1201.
doi: 10.1126/science.1228026 pmid: 23471405 |
[29] | Zhang D L, Huang X Z, Liu Q, et al. Holocene fire records and their drivers in the westerlies-dominated Central Asia[J]. Science of the Total Environment, 2022, 833: 155153. |
[30] |
Bush M B, Silman M R, Urrego D H. 48000 years of climate and forest change in a plant species diversity hot spot[J]. Science, 2004, 303: 827-829.
doi: 10.1126/science.1090795 |
[31] |
Li H, Li Z, Chen Y, et al. Drylands face potential threat of robust drought in the CMIP6 SSPs scenarios[J]. Environmental Research Letters, 2021, 16(11): 114004.
doi: 10.1088/1748-9326/ac2bce |
[32] | Hammer O, Harper D A, Ryan P D. Palaeontological statistics software package for education and data analysis[J]. Palaeontologia Electronica, 2001, 4(1): 9. |
[33] |
Giesecke T, Wolters S, Jahns S, et al. Exploring Holocene changes in palynological richness in northern Europe-Did postglacial immigration matter?[J]. PLoS One, 2012, 7(12): e51624.
doi: 10.1371/journal.pone.0051624 |
[1] | XU Yunhong, LIU Qiong, CHEN Yonghang, WEI Xin, LIU Xin, ZHANG Taixi, SHAO Weiling, YANG Hequn, ZHANG Chengming. Impact of land cover variations on surface albedo in Xinjiang and its surrounding Central Asian region [J]. Arid Zone Research, 2024, 41(10): 1649-1661. |
[2] | CHEN Aijun,Yin . Spatiotemporal distribution of precipitation in five Central Asian countries based on FY-4A quantitative precipitation estimates [J]. Arid Zone Research, 2023, 40(9): 1369-1381. |
[3] | ZHAO Zhuoyi, HAO Xingming. Actual evapotranspiration characteristics and attribution in arid Central Asia based on the Priestley-Taylor method [J]. Arid Zone Research, 2023, 40(7): 1085-1093. |
[4] | WU Yueting, GUO Lidan, JING Peiran, HUANG Feng, WANG Haoxuan. Coupling relationship and spatiotemporal differentiation of the water-energy-food-ecology nexus in five Central Asian countries [J]. Arid Zone Research, 2023, 40(4): 573-582. |
[5] | SHI Jianzhou, LIU Xiande, TIAN Qing, YU Pengtao, WANG Yanhui. Rainfall response of soil water content on a slope of Larix principis-rupprechtii plantation in the semi-arid Liupan Mountains [J]. Arid Zone Research, 2023, 40(4): 594-604. |
[6] | GAO Jie,ZHAO Yong,YAO Junqiang,Dilinuer TUOLIEWUBIEKE,WANG Mengyuan. Spatiotemporal evolution of atmospheric water cycle factors in arid regions of Central Asia under climate change [J]. Arid Zone Research, 2022, 39(5): 1371-1384. |
[7] | DU Weibing,ZHANG Shiqiong,LI Junli,BAO Anming,WANG Shuangting,SHI Ningke,XU Linjuan,GAO Xin,MA Dandan,ZHENG Yanchao. Temporal reconstruction of alpine glacier surface elevation variation in Central Asia [J]. Arid Zone Research, 2022, 39(3): 676-683. |
[8] | ZHANG Yunxin,HAO Haichao,FAN Lianlian,LI Yaoming,ZHANG Renping,LI Kaihui. Study on spatio-temporal dynamics and driving factors of NPP in Central Asian grassland [J]. Arid Zone Research, 2022, 39(3): 698-707. |
[9] | LIU Qi,XU Zhonglin,ZHANG Dongliang. Paleoenvironmental implications of α-cellulose carbon and oxygen isotopes from Heiyangpo peatland in the Altai Mountains [J]. Arid Zone Research, 2022, 39(1): 30-40. |
[10] | MA Yufen,LI Ruqi,ZHANG Meng,Ali Mamtimin,ZHANG Guangxing. Bias analysis and applicability evaluation of the atmospheric infrared sounder (AIRS) radiance in Central Asia [J]. Arid Zone Research, 2021, 38(1): 12-21. |
[11] | ZHANG Leyuan, WANG Yi, CHEN Yaning. Spatial and temporal distribution characteristics of drought in Central Asia based on SPEI index [J]. Arid Zone Research, 2020, 37(2): 282-290. |
[12] |
PAN Xu-dong, WANG Jiang-li, WU Ling, ZHANG Jian-ping, LAI Xian-qi.
Adaptability of Biology and Agricultural Technologies to the Water Heat Coordination in the Arid Oases in Central Asia [J]. Arid Zone Research, 2019, 36(1): 52-57. |
[13] | SUN Cong-jian, ZHANG Zi-yu, CHEN Wei, LI Wei, CHEN Ruo-xia. Spatial Distribution of Precipitation Stable Isotopes in the Alpine Zones in Central Asia [J]. Arid Zone Research, 2019, 36(1): 19-28. |
[14] |
Ablekim Abdimijit, GE Yong-xiao, WANG Ya-jun, HU Ru-ji.
The Past,Present and Feature of the Aral Sea [J]. Arid Zone Research, 2019, 36(1): 7-18. |
[15] | . Study on atmospheric circulation characteristics of precipitation anomalies in arid region of Central Asia [J]. , 2018, 35(2): 249-259. |
|