Arid Zone Research ›› 2023, Vol. 40 ›› Issue (9): 1369-1381.doi: 10.13866/j.azr.2023.09.01
• Weather and Climate • Previous Articles Next Articles
Received:
2023-02-28
Revised:
2023-04-18
Online:
2023-09-15
Published:
2023-09-28
CHEN Aijun,Yin . Spatiotemporal distribution of precipitation in five Central Asian countries based on FY-4A quantitative precipitation estimates[J].Arid Zone Research, 2023, 40(9): 1369-1381.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | 吴玥葶, 郭利丹, 井沛然, 等. 中亚五国水-能源-粮食-生态耦合关系及时空分异[J]. 干旱区研究, 2023, 40(4): 573-582. |
[Wu Yueting, Guo Lidan, Jing Peiran, et al. Coupling relationship and spatiotemporal differentiation of the water-energy-food-ecology nexus in five Central Asian countries[J]. Arid Zone Research, 2023, 40(4): 573-582.] | |
[2] | 谢志轩, 肖天贵, 叶如辉, 等. “一带一路”陆路地区自然灾害时空分布特征[J]. 成都信息工程大学学报, 2022, 37(1): 111-118. |
[Xie Zhixuan, Xiao Tiangui, Ye Ruhui, et al. Temporal and spatial distribution characteristics of natural disasters in the land area of the “Belt and Road”[J]. Journal of Chengdu University of Information Technology, 2022, 37(1): 111-118.] | |
[3] | 王会军, 唐国利, 陈海山, 等. “一带一路” 区域气候变化事实、影响及可能风险[J]. 大气科学学报, 2020, 43(1): 1-9. |
[Wang Huijun, Tang Guoli, Chen Haishan, et al. The Belt and Road region climate change: Facts, impacts and possible risks[J]. Transactions of Atmospheric Sciences, 2020, 43(1): 1-9.] | |
[4] | 周高洁, 赵勇, 姚俊强, 等. 气候变化背景下中亚干旱区大气水分循环要素时空演变[J]. 干旱区研究, 2022, 39(5): 1371-1384. |
[Zhou Gaojie, Zhao Yong, Yao Junqiang, et al. Spatiotemporal evolution of atmospheric water cycle factors in arid regions of Central Asia under climate change[J]. Arid Zone Research, 2022, 39(5): 1371-1384.] | |
[5] |
Wang J S, Chen F H, Jin L Y, et al. Characteristics of the dry/wet trend over arid Central Asia over the past 100 years[J]. Climate Research, 2010, 41(1): 51-59.
doi: 10.3354/cr00837 |
[6] | 闫昕旸, 张强, 张文波, 等. 泛中亚干旱区气候变化特征分析[J]. 干旱区研究, 2021, 38(1): 1-11. |
[Yan Xinyang, Zhang Qiang, Zhang Wenbo, et al. Analysis of climate characteristics in the Pan-Central-Asia arid region[J]. Arid Zone Research, 2021, 38(1): 1-11.] | |
[7] | 陈发虎, 黄伟, 靳立亚, 等. 全球变暖背景下中亚干旱区降水变化特征及其空间差异[J]. 中国科学:地球科学, 2011, 41(11): 1647-1657. |
[Chen Fahu, Huang Wei, Jin Liya, et al. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming[J]. Science China Earth Science, 2011, 41(11): 1647-1657.] | |
[8] |
迪丽努尔·托列吾别克,李栋梁. 近115 a中亚干湿气候变化研究[J]. 干旱气象, 2018, 36(2):185-195.
doi: 10.11755/j.issn.1006-7639(2018)-02-0185 |
[Dilinuer Tuoliewubieke, Li Dongliang. Characteristics of the dry/wet climate change in Central Asia in recent 115 years[J]. Journal of Arid Meteorology, 2018, 36(2): 185-195. ]
doi: 10.11755/j.issn.1006-7639(2018)-02-0185 |
|
[9] |
Hu Z Y, Zhou Q M, Chen X, et al. Variations and changes of annual precipitation in Central Asia over the last century[J]. International Journal of Climatology, 2017, 37(S1): 157-170.
doi: 10.1002/joc.2017.37.issue-S1 |
[10] | 李如琦, 唐冶, 阿布力米提江·阿不力克木, 等. 中亚五国暴雨分布及其环流特征[J]. 沙漠与绿洲气象, 2019, 13(1): 1-7. |
[Li Ruqi, Tang Ye, Ablimitjan Ablikim, et al. Characteristics of rainstorm and its circulation in five countries of Central Asian[J]. Desert and Oasis Meteorology, 2019, 13(1): 1-7.] | |
[11] |
Yang T, Li Q, Chen X, et al. Spatiotemporal variability of the precipitation concentration and diversity in Central Asia[J]. Atmospheric Research, 2020, 241(35): 104954.
doi: 10.1016/j.atmosres.2020.104954 |
[12] | 徐利岗, 杜历, 姚海娇, 等. 中亚干旱区降水时空变化特征及趋势分析[J]. 干旱区资源与环境, 2015, 29(11): 121-127. |
[Xu Ligang, Du Li, Yao Haijiao, et al. Spatiotemporal variations and tendency of annual precipitation in the arid Central Asia[J]. Journal of Arid Land Resources and Environment, 2015, 29(11): 121-127.] | |
[13] |
Zhang M, Chen Y N, Shen Y J, et al. Changes of precipitation extremes in arid Central Asia[J]. Quaternary International, 2017, 436(29): 16-27.
doi: 10.1016/j.quaint.2016.12.024 |
[14] |
Zhang M, Chen Y N, Shen Y J, et al. Tracking climate change in Central Asia through temperature and precipitation extremes[J]. Journal of Geographical Sciences, 2019, 29(1): 3-28.
doi: 10.1007/s11442-019-1581-6 |
[15] |
Yu Y, Chen X, Disse M, et al. Climate change in Central Asia: Sino-German cooperative research findings[J]. Science Bulletin, 2020, 65(9): 689-692.
doi: 10.1016/j.scib.2020.02.008 pmid: 36659099 |
[16] |
Sorooshian S, Hsu K L, Gao X G, et al. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall[J]. Bulletin of the American Meteorological Society, 2000, 81(9): 2035-2046.
doi: 10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2 |
[17] |
Joyce R J, Janowiak J E, Arkin P A, et al. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution[J]. Journal of Hydrometeorology, 2004, 5(3): 487-503.
doi: 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2 |
[18] |
Huffman G J, Bolvin D T, Nelkin E J, et al. The TRMM multi-satellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales[J]. Journal of Hydrometeorology, 2007, 8(1): 38-55.
doi: 10.1175/JHM560.1 |
[19] | Huffman G J, Bolvin D T. Algorithm Theoretical Basis Document, Version 4.1: NASA Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM (IMERG)[EB/OL]. NASA/GSFC: Greenbelt, MD, USA, 2013. |
[20] | Hong Z K, Han Z Y, Li X Y, et al. Generation of an improved precipitation dataset from multisource information over the Tibetan Plateau[J]. Journal of Hydrometeorology, 2021, 22(5): 1275-1295. |
[21] |
Thies B, Bendix J. Satellite based remote sensing of weather and climate: Recent achievements and future perspectives[J]. Meteorological Applications, 2011, 18(3): 262-295.
doi: 10.1002/met.v18.3 |
[22] |
Kidd C, Levizzani V. Status of satellite precipitation retrievals[J]. Hydrology and Earth System Sciences, 2011, 15(15): 1109-1116.
doi: 10.5194/hess-15-1109-2011 |
[23] |
Yuan F, Wang B, Shi C X, et al. Evaluation of hydrological utility of IMERG Final run V05 and TMPA 3B42V7 satellite precipitation products in the Yellow River source region, China[J]. Journal of Hydrology, 2018, 567(56): 696-711.
doi: 10.1016/j.jhydrol.2018.06.045 |
[24] |
Min M, Wu C Q, Li C, et al. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series[J]. Journal of Meteorological Research, 2017, 31(4): 708-719.
doi: 10.1007/s13351-017-6161-z |
[25] |
Yang J, Zhang Z Q, Wei C Y, et al. Introducing the new generation of Chinese geostationary weather satellites, Feng Yun-4[J]. Bulletin of the American Meteorological Society, 2017, 98(8): 1637-1658.
doi: 10.1175/BAMS-D-16-0065.1 |
[26] | 游然. 卫星定量降水估计方法[C] // 合肥:第35届中国气象学会年会, 2018. |
[You Ran. Satellite quantitative precipitation estimation method[C] // Hefei:The 35th Annual Conference of the Chinese Meteorological Society, 2018.] | |
[27] | 钟宇璐. 风云四号卫星定量降水估计产品的检验评估[J]. 农业灾害研究, 2021, 11(3): 96-98. |
[Zhong Yulu. Evaluation and verification of FY-4A satellite quantitative precipitation estimation product[J]. Journal of Agricultural Catastropholgy, 2021, 11(3): 96-98.] | |
[28] | 陈爱军, 孔宇, 陆大春. 应用CGDPA评估中国大陆地区IMERG的降水估计精度[J]. 大气科学学报, 2018, 41(6): 797-806. |
[Chen Aijun, Kong Yu, Lu Dachun. Evaluation of the precipitation estimation accuracy of IMERG over mainland China with CGDPA[J]. Transactions of Atmospheric Sciences, 2018, 41(6): 797-806.] | |
[29] | 陈爱军, 吴雪菲, 楚志刚. 精细化评估GPM/IMERG产品对台风“妮坦”降水的观测精度[J]. 气象科学, 2021, 41(5): 678-686. |
[Chen Aijun, Wu Xuefei, Chu Zhigang. Refined evaluation of the accuracy of GPM/IMERG in the precipitation process of typhoon Nida[J]. Journal of the Meteorological Sciences, 2021, 41(5): 678-686.] | |
[30] | 吴雪菲, 陈爱军, 余安安, 等. 双偏振雷达评估IMERG对不同类型降水的观测精度[J]. 气象科技, 2022, 50(4): 476-484. |
[Wu Xuefei, Chen Aijun, Yu An’an, et al. Using dual-polarization radar to evaluate accuracy of GPM/IMERG in different types of precipitation process[J]. Meteorological Science and Technology, 2022, 50(4): 476-484.] | |
[31] |
Arshad M, Ma X Y, Yin J, et al. Evaluation of GPM-IMERG and TRMM-3B42 precipitation products over Pakistan[J]. Atmospheric Research, 2021, 249(36): 105341.
doi: 10.1016/j.atmosres.2020.105341 |
[32] |
Hosseini-Moghari S M, Tang Q H. Validation of GPM IMERG V05 and V06 precipitation products over Iran[J]. Journal of Hydrometeorology, 2020, 21(5): 1011-1037.
doi: 10.1175/JHM-D-19-0269.1 |
[33] |
Wang N, Liu W B, Sun F, et al. Evaluating satellite-based and reanalysis precipitation datasets with gauge-observed data and hydrological modeling in the Xihe River Basin, China[J]. Atmospheric Research, 2020, 234(35): 104746.
doi: 10.1016/j.atmosres.2019.104746 |
[34] | 国家气象中心. 降水量等级(GB/T 28592-2012)[S]. 北京: 中国标准出版社, 2012. |
[National Meteorological Centre. Grade of precipitation (GB/T 28592-2012)[S]. Beijing: Standard Press of China, 2012. ] |
[1] | XU Yunhong, LIU Qiong, CHEN Yonghang, WEI Xin, LIU Xin, ZHANG Taixi, SHAO Weiling, YANG Hequn, ZHANG Chengming. Impact of land cover variations on surface albedo in Xinjiang and its surrounding Central Asian region [J]. Arid Zone Research, 2024, 41(10): 1649-1661. |
[2] | GAO Jie,ZHAO Yong,YAO Junqiang,Dilinuer TUOLIEWUBIEKE,WANG Mengyuan. Spatiotemporal evolution of atmospheric water cycle factors in arid regions of Central Asia under climate change [J]. Arid Zone Research, 2022, 39(5): 1371-1384. |
|