Arid Zone Research ›› 2022, Vol. 39 ›› Issue (3): 667-675.doi: 10.13866/j.azr.2022.03.01
Received:
2021-12-06
Revised:
2022-01-13
Online:
2022-05-15
Published:
2022-05-30
ZHANG Dongliang. Changes of pollen taxa diversity in the arid Central Asia under the Holocene Westerlies Mode: A case study of the Altai Mountains[J].Arid Zone Research, 2022, 39(3): 667-675.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Steffen W, Rockström J, Richardson K, et al. Trajectories of the earth system in the Anthropocene[J]. Proceedings of the National Academy of Sciences, 2018, 115(33): 8252-8259.
doi: 10.1073/pnas.1810141115 |
[2] |
Dawson T P, Jackson S T, House J I, et al. Beyond predictions: Biodiversity conservation in a changing climate[J]. Science, 2011, 332(6025): 53-58.
doi: 10.1126/science.1200303 |
[3] | Urban M C, Bocedi G, Hendry A P, et al. Improving the forecast for biodiversity under climate change[J]. Science, 2016, 353(6304): 1-10. |
[4] | Foden W B, Young B E, Akçakaya H R, et al. Climate change vulnerability assessment of species[J]. Wiley Interdisciplinary Reviews: Climate Change, 2019, 10(1): e551. |
[5] | Fordham D A, Jackson S T, Brown S C, et al. Using paleo-archives to safeguard biodiversity under climate change[J]. Science, 2020, 369: eabc5654. |
[6] |
Weng C Y, Hooghiemstra H, Duivenvoorden J F. Challenges in estimating past plant diversity from fossil pollen data: Statistical assessment, problems, and possible solutions[J]. Divers Distribution, 2006, 12: 310-318.
doi: 10.1111/j.1366-9516.2006.00230.x |
[7] |
Liu H Y, Park Williams A, Allen C D, et al. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia[J]. Global Change Biology, 2013, 19: 2500-2510.
doi: 10.1111/gcb.12217 |
[8] |
Weng C, Hooghiemstra H, Duivenvoorden J F. Response of pollen diversity to the climate-driven altitudinal shift of vegetation in the Colombian Andes[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362(1478): 253-262.
doi: 10.1098/rstb.2006.1985 |
[9] |
Franco A M, Hill J K, Kitschke C, et al. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries[J]. Global Change Biology, 2006, 12: 1545-1553.
doi: 10.1111/j.1365-2486.2006.01180.x |
[10] |
Huang J P, Yu H, Guan X D, et al. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 2016, 6: 166-171.
doi: 10.1038/nclimate2837 |
[11] |
Zhang D L, Feng Z D. Holocene climate variations in the Altai Mountains and the surrounding areas: A synthesis of pollen records[J]. Earth-Science Reviews, 2018, 185: 847-869.
doi: 10.1016/j.earscirev.2018.08.007 |
[12] |
Chen F H, Yu Z, Yang M, et al. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27: 351-364.
doi: 10.1016/j.quascirev.2007.10.017 |
[13] |
Cheng Y, Liu H, Wang H, et al. Climate-driven Holocene migration of forest-steppe ecotone in the Tien Mountains[J]. Forests, 2020, 11(11): 1139.
doi: 10.3390/f11111139 |
[14] | 张芸, 孔昭宸, 阎顺, 等. 新疆天山北坡地区中晚全新世古生物多样性特征[J]. 植物生态学报, 2005, 29(5): 836-844. |
[ Zhang Yun, Kong Zhaocheng, Yan Shun, et al. Paleo-biodiversity at the northern piedmont of Tianshan Mountains in Xinjiang during the Middle to Late Holocene[J]. Acta Phytoecologica Sinica, 2005, 29(5): 836-844. ] | |
[15] | Zhang D L, Chen X, Li Y M, et al. Holocene moisture variations in the arid Central Asia: New evidence from the southern Altai Mountains of China[J]. Science of the Total Environment, 2020, 735: 139545. |
[16] | Wang W, Zhang D L. Holocene vegetation evolution and climatic dynamics inferred from an ombrotrophic peat sequence in the southern Altai Mountains within China[J]. Global and Planetary Change, 2019, 172: 10-22. |
[17] |
Zhang D L, Chen X, Li Y M, et al. Holocene vegetation dynamics and associated climate changes in the Altai Mountains of the arid Central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 550: 109744.
doi: 10.1016/j.palaeo.2020.109744 |
[18] |
Feng Z D, Sun A Z, Abdusalih N, et al. Vegetation changes and associated climatic changes in the southern Altai Mountains within China during the Holocene[J]. Holocene, 2017, 27(5): 683-693.
doi: 10.1177/0959683616670469 |
[19] |
Huang X Z, Peng W, Rudaya N, et al. Holocene vegetation and climate dynamics in the Altai Mountains and surrounding areas[J]. Geophysical Research Letters, 2018, 45(13): 6628-6636.
doi: 10.1029/2018GL078028 |
[20] |
Zhang D L, Yang Y P, Ran M, et al. Vegetation dynamics and its response to climate change during the past 2000 years in the Altai Mountains, northwestern China[J]. Frontiers of Earth Science, 2021, doi.10.1007/s11707-021-0906-9
doi: doi.10.1007/s11707-021-0906-9 |
[21] | Zhang D L, Lan B, Yang Y P. Comparison of precipitation variations at different time scales in the northern and southern Altai Mountains[J]. Acta Geographica Sinica, 2017, 72(9): 1569-1579. |
[22] |
Blyakharchuk T, Chernova N. Vegetation and climate in the western Sayan Mts according to pollen data from Lugovoe Mire as a background for prehistoric cultural change in southern Middle Siberia[J]. Quaternary Science Reviews, 2013, 75: 22-42.
doi: 10.1016/j.quascirev.2013.05.017 |
[23] |
袁国映. 阿尔泰山西部地区的垂直自然带[J]. 地理学报, 1986, 41(1): 32-40.
doi: 10.11821/xb198601004 |
[ Yuan Guoying. The vertical zonation of the western Altay MTS[J]. Acta Geographica Sinica, 1986, 41(1): 32-40. ]
doi: 10.11821/xb198601004 |
|
[24] | 李泉, 赵艳. 基于孢粉组合定量重建古植物多样性的方法与进展[J]. 第四纪研究, 2018, 38(4): 821-829. |
[ Li Quan, Zhao Yan. Quantitative methods and progress of paleofloristic diversity reconstruction based on pollen assemblages[J]. Quaternary Sciences, 2018, 38(4): 821-829. ] | |
[25] |
Prentice I, Cramer W, Harrison S, et al. A global Biome model based on plant physiology and dominance, soil properties and climate[J]. Journal of Biogeograph, 1992, 19(2): 117-134.
doi: 10.2307/2845499 |
[26] |
Prentice I, Guiot J, Huntley B, et al. Reconstructing biomes from palaeoecological data: A general method and its application to European pollen data at 0 and 6 ka[J]. Climate Dynamics, 1996, 12 (3): 185-194.
doi: 10.1007/BF00211617 |
[27] |
Walker M J C, Berkelhammer M, Björck S, et al. Formal subdivision of the Holocene series/epoch: A discussion paper by a working group of INTIMATE (integration of ice core, marine and terrestrial records) and the subcommission on Quaternary stratigraphy (international commission on stratigraphy)[J]. Journal of Quaternary Science, 2012, 27: 649-659.
doi: 10.1002/jqs.2565 |
[28] |
Marcott S, Shakun J, Clark P, et al. A reconstruction of regional and global temperature for the past 11300 years[J]. Science, 2013, 339: 1198-1201.
doi: 10.1126/science.1228026 pmid: 23471405 |
[29] | Zhang D L, Huang X Z, Liu Q, et al. Holocene fire records and their drivers in the westerlies-dominated Central Asia[J]. Science of the Total Environment, 2022, 833: 155153. |
[30] |
Bush M B, Silman M R, Urrego D H. 48000 years of climate and forest change in a plant species diversity hot spot[J]. Science, 2004, 303: 827-829.
doi: 10.1126/science.1090795 |
[31] |
Li H, Li Z, Chen Y, et al. Drylands face potential threat of robust drought in the CMIP6 SSPs scenarios[J]. Environmental Research Letters, 2021, 16(11): 114004.
doi: 10.1088/1748-9326/ac2bce |
[32] | Hammer O, Harper D A, Ryan P D. Palaeontological statistics software package for education and data analysis[J]. Palaeontologia Electronica, 2001, 4(1): 9. |
[33] |
Giesecke T, Wolters S, Jahns S, et al. Exploring Holocene changes in palynological richness in northern Europe-Did postglacial immigration matter?[J]. PLoS One, 2012, 7(12): e51624.
doi: 10.1371/journal.pone.0051624 |
[1] | CHEN Aijun,Yin . Spatiotemporal distribution of precipitation in five Central Asian countries based on FY-4A quantitative precipitation estimates [J]. Arid Zone Research, 2023, 40(9): 1369-1381. |
[2] | ZHAO Zhuoyi, HAO Xingming. Actual evapotranspiration characteristics and attribution in arid Central Asia based on the Priestley-Taylor method [J]. Arid Zone Research, 2023, 40(7): 1085-1093. |
[3] | WU Yueting, GUO Lidan, JING Peiran, HUANG Feng, WANG Haoxuan. Coupling relationship and spatiotemporal differentiation of the water-energy-food-ecology nexus in five Central Asian countries [J]. Arid Zone Research, 2023, 40(4): 573-582. |
[4] | SHI Jianzhou, LIU Xiande, TIAN Qing, YU Pengtao, WANG Yanhui. Rainfall response of soil water content on a slope of Larix principis-rupprechtii plantation in the semi-arid Liupan Mountains [J]. Arid Zone Research, 2023, 40(4): 594-604. |
[5] | GAO Jie,ZHAO Yong,YAO Junqiang,Dilinuer TUOLIEWUBIEKE,WANG Mengyuan. Spatiotemporal evolution of atmospheric water cycle factors in arid regions of Central Asia under climate change [J]. Arid Zone Research, 2022, 39(5): 1371-1384. |
[6] | DU Weibing,ZHANG Shiqiong,LI Junli,BAO Anming,WANG Shuangting,SHI Ningke,XU Linjuan,GAO Xin,MA Dandan,ZHENG Yanchao. Temporal reconstruction of alpine glacier surface elevation variation in Central Asia [J]. Arid Zone Research, 2022, 39(3): 676-683. |
[7] | ZHANG Yunxin,HAO Haichao,FAN Lianlian,LI Yaoming,ZHANG Renping,LI Kaihui. Study on spatio-temporal dynamics and driving factors of NPP in Central Asian grassland [J]. Arid Zone Research, 2022, 39(3): 698-707. |
[8] | LIU Qi,XU Zhonglin,ZHANG Dongliang. Paleoenvironmental implications of α-cellulose carbon and oxygen isotopes from Heiyangpo peatland in the Altai Mountains [J]. Arid Zone Research, 2022, 39(1): 30-40. |
[9] | MA Yufen,LI Ruqi,ZHANG Meng,Ali Mamtimin,ZHANG Guangxing. Bias analysis and applicability evaluation of the atmospheric infrared sounder (AIRS) radiance in Central Asia [J]. Arid Zone Research, 2021, 38(1): 12-21. |
[10] | ZHANG Leyuan, WANG Yi, CHEN Yaning. Spatial and temporal distribution characteristics of drought in Central Asia based on SPEI index [J]. Arid Zone Research, 2020, 37(2): 282-290. |
[11] |
PAN Xu-dong, WANG Jiang-li, WU Ling, ZHANG Jian-ping, LAI Xian-qi.
Adaptability of Biology and Agricultural Technologies to the Water Heat Coordination in the Arid Oases in Central Asia [J]. Arid Zone Research, 2019, 36(1): 52-57. |
[12] | SUN Cong-jian, ZHANG Zi-yu, CHEN Wei, LI Wei, CHEN Ruo-xia. Spatial Distribution of Precipitation Stable Isotopes in the Alpine Zones in Central Asia [J]. Arid Zone Research, 2019, 36(1): 19-28. |
[13] |
Ablekim Abdimijit, GE Yong-xiao, WANG Ya-jun, HU Ru-ji.
The Past,Present and Feature of the Aral Sea [J]. Arid Zone Research, 2019, 36(1): 7-18. |
[14] | . Study on atmospheric circulation characteristics of precipitation anomalies in arid region of Central Asia [J]. , 2018, 35(2): 249-259. |
[15] | HU Ruji , JIANG Fengqing , WANG Yajun, LI Junli, LI Yaoming,Abdimijit Ableki. Arid Ecological and Geographical Conditions in Five Countries of Central Asia [J]. , 2014, 31(1): 1-12. |
|