Arid Zone Research ›› 2023, Vol. 40 ›› Issue (4): 573-582.doi: 10.13866/j.azr.2023.04.06
• Land and Water Resources • Previous Articles Next Articles
WU Yueting1,2(),GUO Lidan1,2,3(),JING Peiran4,HUANG Feng2,3,5,WANG Haoxuan5
Received:
2022-09-22
Revised:
2023-01-17
Online:
2023-04-15
Published:
2023-04-28
WU Yueting, GUO Lidan, JING Peiran, HUANG Feng, WANG Haoxuan. Coupling relationship and spatiotemporal differentiation of the water-energy-food-ecology nexus in five Central Asian countries[J].Arid Zone Research, 2023, 40(4): 573-582.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Evaluation index system of WEFE in Central Asia"
子系统层 | 指标层 | 单位 | 性质 | 权重 | |
---|---|---|---|---|---|
水资源 | 水资源供给情况 | 人均可再生内陆水资源量 | m3·人-1 | 正 | 0.245 |
产水模数 | m3·hm-2 | 正 | 0.346 | ||
水资源消费情况 | 人均用水量 | m3·人-1 | 负 | 0.068 | |
用水效益 | 万元GDP用水量 | m3·(104元)-1 | 负 | 0.019 | |
用水结构 | 农业用水比例 | % | 负 | 0.269 | |
工业用水比例 | % | 负 | 0.053 | ||
能源 | 能源供给情况 | 人均能源生产量 | TJ | 正 | 0.255 |
能源消费情况 | 人均能源消费量 | TJ | 负 | 0.069 | |
能源供给结构 | 煤炭产量比例 | % | 正 | 0.218 | |
能源消费结构 | 生活用电比例 | % | 正 | 0.127 | |
可再生能源消费比例 | % | 正 | 0.303 | ||
能源利用效益 | 万元GDP能耗 | TJ·(104元)-1 | 负 | 0.028 | |
粮食 | 粮食生产情况 | 人均粮食产量 | t·人-1 | 正 | 0.158 |
粮食单产 | kg·hm-2 | 正 | 0.093 | ||
粮食生产稳定性 | 粮食产量波动率 | % | 负 | 0.019 | |
粮食种植结构 | 粮食种植面积 | hm2 | 正 | 0.402 | |
人均耕地面积 | hm2·人-1 | 正 | 0.295 | ||
粮食需求 | 人口自然增长率 | % | 负 | 0.033 | |
生态 | 生态环境水平 | 森林覆盖率 | % | 正 | 0.381 |
保护区占陆地面积比例 | % | 正 | 0.190 | ||
环境污染情况 | 工业废水排放量 | t | 负 | 0.078 | |
能源二氧化碳排放量 | t | 负 | 0.126 | ||
对生态环境的压力 | 人口密度 | 人·km-2 | 负 | 0.225 |
Tab. 3
Average value of comprehensive evaluation index, coupling degree and coupling coordination degree of WEFE in five Central Asian countries"
国家 | 协调类型 | 制约因素 | |||||||
---|---|---|---|---|---|---|---|---|---|
塔吉克斯坦 | 0.664 | 0.397 | 0.069 | 0.429 | 0.389 | 0.759 | 0.544 | 勉强协调 | 粮食滞后 |
吉尔吉斯斯坦 | 0.493 | 0.358 | 0.117 | 0.622 | 0.398 | 0.843 | 0.579 | 勉强协调 | 粮食滞后 |
哈萨克斯坦 | 0.389 | 0.330 | 0.674 | 0.394 | 0.447 | 0.961 | 0.655 | 初级协调 | 能源滞后 |
土库曼斯坦 | 0.077 | 0.238 | 0.124 | 0.712 | 0.287 | 0.689 | 0.445 | 濒临失调 | 水资源滞后 |
乌兹别克斯坦 | 0.171 | 0.116 | 0.147 | 0.494 | 0.232 | 0.834 | 0.440 | 濒临失调 | 能源滞后 |
[1] | Hoff H. Understanding the Nexus. Background Paper for the Bonn 2011 Conference: The Water, Energy and Food Security Nexus[R]. Stockholm: Stockholm Environment Institute, 2011. |
[2] | 于宏源. 纽带安全: 能源-粮食-水安全威胁及其思考[J]. 区域与全球发展, 2018, 2(2): 94-110. |
[Yu Hongyuan. The energy-food-water security nexus security and its implications[J]. Area Studies and Global Development, 2018, 2(2): 94-110.] | |
[3] |
Zhang C, Chen X X, Li Y, et al. Water-energy-food nexus: Concepts, questions and methodologies[J]. Journal of Cleaner Production, 2018, 195: 625-639.
doi: 10.1016/j.jclepro.2018.05.194 |
[4] | 李良, 毕军, 周元春, 等. 基于粮食-能源-水关联关系的风险管控研究进展[J]. 中国人口·资源与环境, 2018, 28(7): 85-92. |
[Li Liang, Bi Jun, Zhou Yuanchun, et al. Research progress of regional environment risk management: From the perspectives of food-energy-water nexus[J]. China Population, Resources and Environment, 2018, 28(7): 85-92.] | |
[5] |
Simpson G B, Jewitt G P W. The development of the water-energy-food nexus as a framework for achieving resource security: A review[J]. Frontiers in Environmental Science, 2019, 7: 8.
doi: 10.3389/fenvs.2019.00008 |
[6] |
罗巍, 杨玄酯, 杨永芳, 等. 黄河流域水-能源-粮食纽带关系协同演化及预测[J]. 资源科学, 2022, 44(3): 608-619.
doi: 10.18402/resci.2022.03.14 |
[Luo Wei, Yang Xuanzhi, Yang Yongfang, et al. Co-evolution of water-energy-food-nexus in the Yellow River Basin and forecast of future development[J]. Resources Science, 2022, 44(3): 608-619.]
doi: 10.18402/resci.2022.03.14 |
|
[7] |
Owen A, Scott K, Barrett J. Identifying critical supply chains and final products: An input-output approach to exploring the energy-water-food nexus[J]. Applied Energy, 2018, 210: 632-642.
doi: 10.1016/j.apenergy.2017.09.069 |
[8] |
White D J, Hubacek K, Feng K, et al. The water-energy-food nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis[J]. Applied Energy, 2018, 210: 550-567.
doi: 10.1016/j.apenergy.2017.05.159 |
[9] | 孙才志, 周舟, 赵良仕. 基于SD模型的中国西南水-能源-粮食纽带系统仿真模拟[J]. 经济地理, 2021, 41(6): 20-29. |
[Sun Caizhi, Zhou Zhou, Zhao Liangshi. System simulation of water-energy-food in southwest China based on SD model[J]. Economic Geography, 2021, 41(6): 20-29.] | |
[10] |
Bakhshianlamouki E, Masia S, Karimi P, et al. A system dynamics model to quantify the impacts of restoration measures on the water-energy-food nexus in the Urmia lake Basin, Iran[J]. Science of the Total Environment, 2020, 708: 134874.
doi: 10.1016/j.scitotenv.2019.134874 |
[11] |
Xu S S, He W J, Shen J Q, et al. Coupling and coordination degrees of the core water-energy-food nexus in China[J]. International Journal of Environmental Research and Public Health, 2019, 16(9): 1648.
doi: 10.3390/ijerph16091648 |
[12] |
白景锋, 张海军. 中国水-能源-粮食压力时空变动及驱动力分析[J]. 地理科学, 2018, 38(10): 1653-1660.
doi: 10.13249/j.cnki.sgs.2018.10.009 |
[Bai Jingfeng, Zhang Haijun. Spatio-temporal variation and driving force of water-energy-food pressure in China[J]. Scientia Geographica Sinica, 2018, 38(10): 1653-1660.]
doi: 10.13249/j.cnki.sgs.2018.10.009 |
|
[13] |
徐辉, 王亿文, 张宗艳, 等. 黄河流域水-能源-粮食耦合机理及协调发展时空演变[J]. 资源科学, 2021, 43(12): 2526-2537.
doi: 10.18402/resci.2021.12.14 |
[Xu Hui, Wang Yiwen, Zhang Zongyan, et al. Coupling mechanism of water-energy-food and spatiotemporal evolution of coordinated development in the Yellow River Basin[J]. Resources Science, 2021, 43(12): 2526-2537.]
doi: 10.18402/resci.2021.12.14 |
|
[14] |
石天戈, 时卉. 中亚五国资源环境承载与经济发展耦合协调性分析[J]. 世界地理研究, 2019, 28(6): 32-41.
doi: 10.3969/j.issn.1004-9479.2019.06.2019225 |
[Shi Tiange, Shi Hui. Coupling relationship between resources, environment carrying capacity and economy in five Central Asia countries[J]. World Regional Studies, 2019, 28(6): 32-41.]
doi: 10.3969/j.issn.1004-9479.2019.06.2019225 |
|
[15] |
王奕佳, 刘焱序, 宋爽, 等. 水-粮食-能源-生态系统关联研究进展[J]. 地球科学进展, 2021, 36(7): 684-693.
doi: 10.11867/j.issn.1001-8166.2021.073 |
[Wang Yijia, Liu Yanxu, Song Shuang, et al. Research progress of the water-food-energy-ecosystem nexus[J]. Advances in Earth Science, 2021, 36(7): 684-693.]
doi: 10.11867/j.issn.1001-8166.2021.073 |
|
[16] |
Shi H Y, Luo G P, Zheng H W, et al. A novel causal structure-based framework for comparing a basin-wide water-energy-food-ecology nexus applied to the data-limited Amu Darya and Syr Darya river basins[J]. Hydrology and Earth System Sciences, 2021, 25(2): 901-925.
doi: 10.5194/hess-25-901-2021 |
[17] | 高洁, 赵勇, 姚俊强, 等. 气候变化背景下中亚干旱区大气水分循环要素时空演变[J]. 干旱区研究, 2022, 39(5): 1371-1384. |
[Gao Jie, Zhao Yong, Yao Junqiang, et al. Spatiotemporal evolution of atmospheric water cycle factors in arid regions of Central Asia under climate change[J]. Arid Zone Research, 2022, 39(5): 1371-1384.] | |
[18] |
Kuzmina Zh V, Treshkin S E. Climate changes in the Aral Sea region and Central Asia[J]. Arid Ecosystems, 2016, 6(4): 227-240.
doi: 10.1134/S2079096116040028 |
[19] |
Lee S O, Jung Y. Efficiency of water use and its implications for a water-food nexus in the Aral Sea Basin[J]. Agricultural Water Management, 2018, 207: 80-90.
doi: 10.1016/j.agwat.2018.05.014 |
[20] |
Ziganshina D R, de Schutter J L G. Paving the way for evidence-driven transboundary water cooperation in Central Asia[J]. Journal of the American Water Resources Association, 2022, 58(6): 1149-1161.
doi: 10.1111/jawr.v58.6 |
[21] | 姚俊强, 杨青, 毛炜峄, 等. 气候变化和人类活动对中亚地区水文环境的影响评估[J]. 冰川冻土, 2016, 38(1): 222-230. |
[Yao Junqiang, Yang Qing, Mao Weiyi, et al. Evaluation of the impacts of climate change and human activities on the hydrological environment in Central Asia[J]. Journal of Glaciology and Geocryology, 2016, 38(1): 222-230.] | |
[22] |
莫贵芬, 冯建中, 白林燕, 等. 2001—2018年中亚干旱区地表水资源时空变化特征[J]. 地理科学, 2022, 42(1): 174-184.
doi: 10.13249/j.cnki.sgs.2022.01.017 |
[Mo Guifen, Feng Jianzhong, Bai Linyan, et al. Spatio-temporal dynamic characteristics of surface water resources in arid regions of Central Asia from 2001 to 2018[J]. Scientia Geographica Sinica, 2022, 42(1): 174-184.]
doi: 10.13249/j.cnki.sgs.2022.01.017 |
|
[23] |
Li J X, Chen Y N, Xu C C, et al. Evaluation and analysis of ecological security in arid areas of Central Asia based on the emergy ecological footprint (EEF) model[J]. Journal of Cleaner Production, 2019, 235: 664-677.
doi: 10.1016/j.jclepro.2019.07.005 |
[24] | 郝林钢, 左其亭, 刘建华, 等. “一带一路”中亚区水资源利用与经济社会发展匹配度分析[J]. 水资源保护, 2018, 34(4): 42-48. |
[Hao Lingang, Zuo Qiting, Liu Jianhua, et al. Analysis of matching degree between water resources utilization and economic-social development in Central Asia are of “Belt and Road”[J]. Water Resources Protection, 2018, 34(4): 42-48.] | |
[25] | 何理, 王喻宣, 尹方平, 等. 全球气候变化影响下中亚水土资源与农业发展多元匹配特征研究[J]. 中国科学: 地球科学, 2020, 50(9): 1268-1279. |
[He Li, Wang Yuxuan, Yin Fangping, et al. The multivariate matching properties among water and soil resources and agricultural development in Central Asia under global climate change[J]. Scientia Sinica(Terrae), 2020, 50(9): 1268-1279.] | |
[26] | 彭宇, 李发东, 徐宁, 等. 1990—2019年中亚五国干旱状况时空变化特征及大气涛动驱动分析[J]. 中国生态农业学报, 2021, 29(2): 312-324. |
[Peng Yu, Li Fadong, Xu Ning, et al. Spatial-temporal variations in drought conditions and their climatic oscillations in Central Asia from 1990 to 2019[J]. Chinese Journal of Eco-Agriculture, 2021, 29(2): 312-324.] | |
[27] | 胡汝骥, 姜逢清, 王亚俊, 等. 中亚(五国)干旱生态地理环境特征[J]. 干旱区研究, 2014, 31(1): 1-12. |
[Hu Ruji, Jiang Fengqing, Wang Yajun, et al. Arid ecological and geographical conditions in five countries of Central Asia[J]. Arid Zone Research, 2014, 31(1): 1-12.] | |
[28] | 郭利丹, 吴玥葶, 黄峰, 等. 上下游型跨界流域水资源重复博弈及策略——以咸海流域为例[J]. 水利经济, 2022, 40(6): 16-23. |
[Guo Lidan, Wu Yueting, Huang Feng, et al. Study on repeated game and strategy of transboundary basin water resources for the up-down type of international rivers: taking the Aral Sea Basin as an example[J]. Journal of Economics of Water Resources, 2022, 40(6): 16-23.] | |
[29] | BP. Statistical Review of World Energy 2021[EB/OL]. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf, 2022-07-10. |
[30] |
李稚, 李玉朋, 李鸿威, 等. 中亚地区干旱变化及其影响分析[J]. 地球科学进展, 2022, 37(1): 37-50.
doi: 10.11867/j.issn.1001-8166.2021.124 |
[Li Zhi, Li Yupeng, Li Hongwei, et al. Analysis of drought change and its impact in Central Asia[J]. Advances in Earth Science, 2022, 37(1): 37-50.]
doi: 10.11867/j.issn.1001-8166.2021.124 |
|
[31] | 邓鹏, 陈菁, 陈丹, 等. 区域水-能源-粮食耦合协调演化特征研究——以江苏省为例[J]. 水资源与水工程学报, 2017, 28(6): 232-238. |
[Deng Peng, Chen Jing, Chen Dan, et al. The evolutionary characteristics analysis of the coupling and coordination among water, energy and food: Take Jiangsu province as an example[J]. Journal of Water Resources and Water Engineering, 2017, 28(6): 232-238.] | |
[32] | 孙才志, 阎晓东. 中国水资源-能源-粮食耦合系统安全评价及空间关联分析[J]. 水资源保护, 2018, 34(5): 1-8. |
[Sun Caizhi, Yan Xiaodong. Security evaluation and spatial correlation pattern analysis of water resources-energy-food nexus coupling system in China[J]. Water Resources Protection, 2018, 34(5): 1-8.] | |
[33] | 李成宇, 张士强. 中国省际水-能源-粮食耦合协调度及影响因素研究[J]. 中国人口·资源与环境, 2020, 30(1): 120-128. |
[Li Chengyu, Zhang Shiqiang. Chinese provincial water-energy-food coupling coordination degree and influencing factors research[J]. China Population, Resources and Environment, 2020, 30(1): 120-128.] | |
[34] | International Energy Agency (IEA). Database documentation (Renewables information 2022 edition)[EB/OL]. http://wds.iea.org/wds/pdf/ren_documentation.pdf, 2022-12-20. |
[35] |
Cui D, Chen X, Xue Y L, et al. An integrated approach to investigate the relationship of coupling coordination between social economy and water environment on urban scale: A case study of Kunming[J]. Journal of Environmental Management, 2019, 234: 189-199.
doi: 10.1016/j.jenvman.2018.12.091 |
[36] | 周成, 冯学钢, 唐睿. 区域经济—生态环境—旅游产业耦合协调发展分析与预测——以长江经济带沿线各省市为例[J]. 经济地理, 2016, 36(3): 186-193. |
[Zhou Cheng, Feng Xuegang, Tang Rui. Ecological environment-tourism industry: A case study of provinces along the Yangtze economic zone[J]. Economic Geography, 2016, 36(3): 186-193.] | |
[37] | 李福夺, 杨兴洪. 新疆粮食生产波动: 波动特征与影响因素[J]. 干旱区资源与环境, 2016, 30(8): 54-61. |
[Li Fuduo, Yang Xinghong. The food production fluctuation in Xinjiang: Fluctuation characteristics, influence factors and policy recommendations[J]. Journal of Arid Land Resources and Environment, 2016, 30(8): 54-61.] | |
[38] | 廖重斌. 环境与经济协调发展的定量评判及其分类体系——以珠江三角洲城市群为例[J]. 热带地理, 1999, 19(2): 171-177. |
[Liao Chongbin. Quantitative judgement and classification system for coordinated development of environment and economy: A case study of the city group in the Pearl River Delta[J]. Tropical Geography, 1999, 19(2): 171-177.] | |
[39] | Overland I. Natural gas and Russia-Turkmenistan relations[J]. Russian Analytical Digest, 2009, 56(9): 9-13. |
[40] |
Huang J C, Na Y, Guo Y. Spatiotemporal characteristics and driving mechanism of the coupling coordination degree of urbanization and ecological environment in Kazakhstan[J]. Journal of Geographical Sciences, 2020, 30(11): 1802-1824.
doi: 10.1007/s11442-020-1813-9 |
[1] | XU Yunhong, LIU Qiong, CHEN Yonghang, WEI Xin, LIU Xin, ZHANG Taixi, SHAO Weiling, YANG Hequn, ZHANG Chengming. Impact of land cover variations on surface albedo in Xinjiang and its surrounding Central Asian region [J]. Arid Zone Research, 2024, 41(10): 1649-1661. |
[2] | CHEN Aijun,Yin . Spatiotemporal distribution of precipitation in five Central Asian countries based on FY-4A quantitative precipitation estimates [J]. Arid Zone Research, 2023, 40(9): 1369-1381. |
[3] | ZHAO Zhuoyi, HAO Xingming. Actual evapotranspiration characteristics and attribution in arid Central Asia based on the Priestley-Taylor method [J]. Arid Zone Research, 2023, 40(7): 1085-1093. |
[4] | ZOU Yi, MENG Jijun. Evaluation of an oasis-urban-desert landscape and the related eco-environmental effects in an arid area [J]. Arid Zone Research, 2023, 40(6): 988-1001. |
[5] | WANG Peng, QIN Sitong, HU Huirong. Spatial-temporal evolution characteristics of land use change and habitat quality in the Lhasa River Basin over the past three decades [J]. Arid Zone Research, 2023, 40(3): 492-503. |
[6] | GAO Jie,ZHAO Yong,YAO Junqiang,Dilinuer TUOLIEWUBIEKE,WANG Mengyuan. Spatiotemporal evolution of atmospheric water cycle factors in arid regions of Central Asia under climate change [J]. Arid Zone Research, 2022, 39(5): 1371-1384. |
[7] | ZHANG Dongliang. Changes of pollen taxa diversity in the arid Central Asia under the Holocene Westerlies Mode: A case study of the Altai Mountains [J]. Arid Zone Research, 2022, 39(3): 667-675. |
[8] | DU Weibing,ZHANG Shiqiong,LI Junli,BAO Anming,WANG Shuangting,SHI Ningke,XU Linjuan,GAO Xin,MA Dandan,ZHENG Yanchao. Temporal reconstruction of alpine glacier surface elevation variation in Central Asia [J]. Arid Zone Research, 2022, 39(3): 676-683. |
[9] | ZHANG Yunxin,HAO Haichao,FAN Lianlian,LI Yaoming,ZHANG Renping,LI Kaihui. Study on spatio-temporal dynamics and driving factors of NPP in Central Asian grassland [J]. Arid Zone Research, 2022, 39(3): 698-707. |
[10] | ZENG Hongxia,ZHAO Chengzhang,WANG Yufang,LI Xiaoya,ZHAO Tingting,TANG Yurui. Landscape pattern evolution and its influencing factors of alpine wetland in Yanchi Bay [J]. Arid Zone Research, 2021, 38(6): 1771-1781. |
[11] | MA Yufen,LI Ruqi,ZHANG Meng,Ali Mamtimin,ZHANG Guangxing. Bias analysis and applicability evaluation of the atmospheric infrared sounder (AIRS) radiance in Central Asia [J]. Arid Zone Research, 2021, 38(1): 12-21. |
[12] | ZHANG Leyuan, WANG Yi, CHEN Yaning. Spatial and temporal distribution characteristics of drought in Central Asia based on SPEI index [J]. Arid Zone Research, 2020, 37(2): 282-290. |
[13] |
PAN Xu-dong, WANG Jiang-li, WU Ling, ZHANG Jian-ping, LAI Xian-qi.
Adaptability of Biology and Agricultural Technologies to the Water Heat Coordination in the Arid Oases in Central Asia [J]. Arid Zone Research, 2019, 36(1): 52-57. |
[14] | SUN Cong-jian, ZHANG Zi-yu, CHEN Wei, LI Wei, CHEN Ruo-xia. Spatial Distribution of Precipitation Stable Isotopes in the Alpine Zones in Central Asia [J]. Arid Zone Research, 2019, 36(1): 19-28. |
[15] |
Ablekim Abdimijit, GE Yong-xiao, WANG Ya-jun, HU Ru-ji.
The Past,Present and Feature of the Aral Sea [J]. Arid Zone Research, 2019, 36(1): 7-18. |
|