Arid Zone Research ›› 2022, Vol. 39 ›› Issue (1): 30-40.doi: 10.13866/j.azr.2022.01.04
Previous Articles Next Articles
LIU Qi1(),XU Zhonglin1,ZHANG Dongliang2,3,4()
Received:
2021-06-02
Revised:
2021-10-14
Online:
2022-01-15
Published:
2022-01-24
Contact:
Dongliang ZHANG
E-mail:liuqi@stu.xju.edu.cn;zhdl@ms.xjb.ac.cn
LIU Qi,XU Zhonglin,ZHANG Dongliang. Paleoenvironmental implications of α-cellulose carbon and oxygen isotopes from Heiyangpo peatland in the Altai Mountains[J].Arid Zone Research, 2022, 39(1): 30-40.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Yu Z C, Loisel J, Brosseau D P, et al. Global peatland dynamics since the last glacial maximum[J]. Geophysical Research Letters, 2010, 37(13): L13402, doi: 10.1029/2010GL043584.
doi: 10.1029/2010GL043584 |
[2] |
Woodland W A, Charman D J, Sims P C. Quantitative estimates of water tables and soil moisture in Holocene peatlands from testate amoebae[J]. The Holocene, 1998, 8(3): 261-273.
doi: 10.1191/095968398667004497 |
[3] |
Barber K E, Maddy D, Rose N, et al. Replicated proxy-climate signals over the last 2000 yr from two distant UK peat bogs: New evidence for regional palaeoclimate teleconnections[J]. Quaternary Science Reviews, 2000, 19(6): 481-487.
doi: 10.1016/S0277-3791(99)00102-X |
[4] |
Turney C S M, Kershaw A P, Clemens S C, et al. Millennial and orbital variations of El Niño/Southern Oscillation and high-latitude climate in the last glacial period[J]. Nature, 2004, 428: 306-310.
doi: 10.1038/nature02386 |
[5] |
Brenninkmeijer C A M, Vangeel B, Mook W G. Variations in the D/H and18O/16O ratios in cellulose extracted from a peat bog core[J]. Earth and Planetary Science Letters, 1982, 61(2): 283-290.
doi: 10.1016/0012-821X(82)90059-0 |
[6] |
Hong Y T, Wang Z G, Jiang H B, et al. A 6000-year record of changes in drought and precipitation in northeastern China based on a δ13C time series from peat cellulose[J]. Earth and Planetary Science Letters, 2001, 185(1-2): 111-119.
doi: 10.1016/S0012-821X(00)00367-8 |
[7] | 黄超, 李英红, 李云霞, 等. 我国泥炭纤维素同位素记录的古气候变化研究进展[J]. 海洋地质与第四纪地质, 2013, 33(4): 113-124. |
[Huang Chao, Li Yinghong, Li Yunxia, et al. A review of paleoclimatic changes in China based on peat cellulose isotopic records[J]. Marine Geology & Quaternary Geology, 2013, 33(4): 113-124. ] | |
[8] | 张东良, 杨运鹏, 兰波. 泥炭植物碳和氧同位素研究进展[J]. 湿地科学, 2016, 14(6): 923-930. |
[Zhang Dongliang, Yang Yunpeng, Lan Bo. Advance in carbon and oxygen isotopes of plants in peatlands[J]. Wetland Science, 2016, 14(6): 923-930. ] | |
[9] | 郭海春, 田怡苹, 魏士凯, 等. 我国全新世泥炭α纤维素稳定碳同位素记录的对比与分析[J]. 第四纪研究, 2020, 40(5): 1136-1144. |
[Guo Haichun, Tian Yiping, Wei Shikai, et al. Comparison and analyses of the Holocene peat α-cellulose stable carbon isotopic records from China[J]. Quaternary Sciences, 2020, 40(5): 1136-1144. ] | |
[10] |
Hong Y T, Hong B, Lin Q H, et al. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene[J]. Earth and Planetary Science Letters, 2003, 211(3-4): 371-380.
doi: 10.1016/S0012-821X(03)00207-3 |
[11] |
Hong Y T, Hong B, Lin Q H, et al. Inverse phase oscillations between the East Asia and India Ocean summer monsoons during the last 12000 years and paleo-El Niño[J]. Earth and Planetary Science Letters, 2005, 231(3-4): 337-346.
doi: 10.1016/j.epsl.2004.12.025 |
[12] |
Hong B, Hong Y T, Lin Q H, et al. Anti-phase oscillation of Asian monsoons during the Younger Dryas period: Evidence from peat cellulose δ13C of Hani, Northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 297(1): 214-222.
doi: 10.1016/j.palaeo.2010.08.004 |
[13] |
Hong B, Gasse F, Uchida M, et al. Increasing summer rainfall in arid eastern-Central Asia over the past 8500 years[J]. Scientific Reports, 2014, 4(1): 5279, doi: 10.1038/srep05279.
doi: 10.1038/srep05279 |
[14] |
Amesbury M J, Charman D J, Newnham R M, et al. Carbon stable isotopes as a palaeoclimate proxy in vascular plant dominated peatlands[J]. Geochimica et Cosmochimica Acta, 2015, 164: 161-174.
doi: 10.1016/j.gca.2015.05.011 |
[15] | 洪冰. 中国中部全新世气候变化的泥炭同位素记录——以湖北神农架大九湖为例[D]. 广州: 中国科学院地球化学研究所, 2009. |
[Hong Bing. Holocene Climatic Dynamics Recorded by Peat Isotopic in the Central of China: A Case Study from Dajiuhu Lake, Shengnongjia, Hubei[D]. Guangzhou: Institute of Geochemistry, Chinese Academy of Sciences, 2009. ] | |
[16] |
Amesbury M J, Charman D J, Newnham R M, et al. Can oxygen stable isotopes be used to track precipitation moisture source in vascular plant-dominant peatlands?[J]. Earth and Planetary Science Letters, 2015, 430(15): 149-159.
doi: 10.1016/j.epsl.2015.08.015 |
[17] |
Mao D H, Wang Z M, Du B J, et al. National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164: 11-25.
doi: 10.1016/j.isprsjprs.2020.03.020 |
[18] |
Hong Y T, Jiang H B, Liu T S, et al. Response of climate to solar forcing recorded in a 6000-year δ18O time-series of Chinese peat cellulose[J]. The Holocene, 2000, 10(1): 1-7.
doi: 10.1191/095968300669856361 |
[19] |
Hong Y T, Hong B, Lin Q H, et al. Synchronous climate anomalies in the western North Pacific and North Atlantic regions during the last 14000 years[J]. Quaternary Science Reviews, 2009, 28(9-10): 840-849.
doi: 10.1016/j.quascirev.2008.11.011 |
[20] |
Liu J L, Chen Y, Ma L M, et al. The δ13C of cellulose from modern plants and its responses to the atmosphere: From the peatland records of Dajiuhu, China[J]. The Holocene, 2017, 28(3): 408-414.
doi: 10.1177/0959683617729444 |
[21] |
Liu J L, Chen Y, Mao Y N, et al. Decrypting stable oxygen isotope variability in modern plants of the Dajiuhu peatland from Hubei Province, China: Implications for palaecology and palaeoenvironments[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 556: 109910, doi: 10.1016/j.palaeo.2020.109910.
doi: 10.1016/j.palaeo.2020.109910 |
[22] |
Rao Z G, Huang C, Xie L H, et al. Long-term summer warming trend during the Holocene in central Asia indicated by alpine peat α-cellulose δ13C record[J]. Quaternary Science Reviews, 2019, 203: 56-67.
doi: 10.1016/j.quascirev.2018.11.010 |
[23] |
Rao Z G, Shi F X, Li Y X, et al. Long-term winter/summer warming trends during the Holocene revealed by α-cellulose δ18O/δ13C records from an alpine peat core from central Asia[J]. Quaternary Science Reviews, 2020, 232: 106217, doi: 10.1016/j.quascirev.2020.106217.
doi: 10.1016/j.quascirev.2020.106217 |
[24] |
Wang W, Zhang D L. Holocene vegetation evolution and climatic dynamics inferred from an ombrotrophic peat sequence in the southern Altai Mountains within China[J]. Global and Planetary Change, 2019, 179: 10-22.
doi: 10.1016/j.gloplacha.2019.05.003 |
[25] |
Zhang D L, Chen X, Li Y M, et al. Holocene vegetation dynamics and associated climate changes in the Altai Mountains of the Arid Central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 550: 109744, doi: 10.1016/j.palaeo.2020.109744.
doi: 10.1016/j.palaeo.2020.109744 |
[26] | 张东良, 李寅波, 杨运鹏, 等. 阿尔泰山北部过去2000 a来的气候记录集成[J]. 干旱区研究, 2019, 36(1): 176-185. |
[Zhang Dongliang, Li Yinbo, Yang Yunpeng, et al. Synthesized climate change in the north Altay Mountains in the past 2000 years[J]. Arid Zone Research, 2019, 36(1): 176-185. ] | |
[27] | 张彦, 马学慧, 刘兴土, 等. 新疆阿尔泰山区全新世泥炭丘形态、发育过程与泥炭堆积速率初探[J]. 第四纪研究, 2018, 38(5): 1221-1232. |
[Zhang Yan, Ma Xuehui, Liu Xingtu, et al. Priliminary study on morphology, development process and peat accumulation rate of palsas during the Holocene in the Altai Mountains, northern Xinjiang Autonomous Region, Northwest China[J]. Quaternary Sciences, 2018, 38(5): 1221-1232. ] | |
[28] |
Aizen E M, Aizen V B, Melack J M, et al. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia[J]. International Journal of Climatology, 2001, 21(5): 535-556.
doi: 10.1002/(ISSN)1097-0088 |
[29] |
Meeker L D, Mayewski P A. A 1400-year high-resolution record of atmospheric circulation over the North Atlantic and Asia[J]. The Holocene, 2002, 12(3): 257-266.
doi: 10.1191/0959683602hl542ft |
[30] |
Sun C, Li J P, Zhao S. Remote influence of Atlantic multidecadal variability on Siberian warm season precipitation[J]. Scientific Reports, 2015, 5: 16853, doi: 10.1038/srep16853.
doi: 10.1038/srep16853 |
[31] | 努尔巴依·阿布都沙力克, 叶勒波拉提·托流汉, 孔琼英. 阿勒泰地区沼泽湿地调查研究[J]. 乌鲁木齐职业大学学报, 2008, 17(1): 8-13. |
[Nurbay Abdusalih, Erbolat Tolewhan, Kong Qiongying. Swamp wetland research in Altay Prefecture[J]. Journal of Urumqi Vocational University, 2008, 17(1): 8-13. ] | |
[32] | 于苏云江·吗米提敏. 中国阿尔泰山泥炭湿地动态变化及修复对策研究[D]. 乌鲁木齐: 新疆大学, 2011. |
[Yu suyun jiang Mamitimin. Study on Peatland Change and Restoration Strategies in the Altai Mountain, NW China[D]. Urumqi: Xinjiang University, 2011. ] | |
[33] |
Zhang D L, Yang Y P, Lan B. Peat humification-and δ13Ccellulose-recorded warm-season moisture variations during the past 500 years in the southern Altai Mountains within northern Xinjiang of China[J]. Journal of Mountain Science, 2017, 14(11): 2200-2211.
doi: 10.1007/s11629-017-4538-1 |
[34] | 兰波. 过去2000年新疆北部的湿度变化及其控制机理[D]. 乌鲁木齐: 中国科学院新疆生态与地理研究所, 2017. |
[Lan Bo. Moisture Variations in Northern Xinjiang and the Modulating Mechanisms during Past 2000 Years[D]. Urumqi: Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 2017. ] | |
[35] |
Wu J W, Xiao X Y, Sun J. Distribution and budget of 137Cs in the China Seas[J]. Scientific Reports, 2020, 10: 8795, doi: 10.1038/s41598-020-65280-x.
doi: 10.1038/s41598-020-65280-x |
[36] |
Sanchez-Cabeza J A, Ruiz-Fernández A C. 210Pb sediment radiochronology: An integrated formulation and classification of dating models[J]. Geochimica Et Cosmochimica Acta, 2012, 82: 183-200.
doi: 10.1016/j.gca.2010.12.024 |
[37] |
Lan J H, Wang T L, Chawchai S, et al. Time marker of 137Cs fallout maximum in lake sediments of Northwest China[J]. Quaternary Science Reviews, 241: 106413, doi: 10.1016/j.quascirev.2020.106413.
doi: 10.1016/j.quascirev.2020.106413 |
[38] | 黄超, 李英红, 郭文康, 等. 泥炭样品当中α-纤维素提取的实验方法探讨[J]. 干旱区地理, 2015, 38(4): 728-734. |
[Huang Chao, Li Yinghong, Guo Wenkang, et al. Improved peat α-cellulose extraction procedure[J]. Arid Land Geography, 2015, 38(4): 728-734. ] | |
[39] |
Sidorova O V, Saurer M, Myglan V S, et al. A multi-proxy approach for revealing recent climatic changes in the Russian Altai[J]. Climate Dynamics, 2012, 38(1-2): 175-188.
doi: 10.1007/s00382-010-0989-6 |
[40] |
McCarroll D, Loader N J. Stable isotopes in tree rings[J]. Quaternary Science Reviews, 2004, 23(7-8): 771-801.
doi: 10.1016/j.quascirev.2003.06.017 |
[41] |
Tillman P K, Holzkamper S, Andersen T J, et al. Stable isotopes in Sphagnum fuscum peat as Late-Holocene climate proxies in northeastern European Russia[J]. The Holocene, 2013, 23(10): 1381-1390.
doi: 10.1177/0959683613489580 |
[42] |
Ménot G, Burns S J. Carbon isotopes in ombrogenic peat bog plants as climatic indicators: Calibration from an altitudinal transect in Switzerland[J]. Organic Geochemistry, 2001, 32(2): 233-245.
doi: 10.1016/S0146-6380(00)00170-4 |
[43] |
Zhang D L, Feng Z D, Yang Y P, et al. Peat δ13Ccelluose-recorded wetting trend during the past 8000 years in the southern Altai Mountains, northern Xinjiang, NW China[J]. Journal of Asian Earth Sciences, 2018, 156: 174-179.
doi: 10.1016/j.jseaes.2018.01.029 |
[44] |
Xu H, Zhou K E, Lan J H, et al. Arid Central Asia saw mid-Holocene drought[J]. Geology, 2019, 47(3): 255-258.
doi: 10.1130/G45686.1 |
[45] |
Hong B, Gasse F, Uchida M, et al. Increasing summer rainfall in arid eastern-Central Asia over the past 8500 years[J]. Scientific Repoets, 2014, 4: 5279, doi: 10.1038/srep05279.
doi: 10.1038/srep05279 |
[46] |
Chen F H, Yu Z C, Yang M L, et al. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3-4): 351-364.
doi: 10.1016/j.quascirev.2007.10.017 |
[47] | Ran M, Feng Z D. Holocene moisture variations across China and driving mechanisms: A synjournal of climatic records[J]. Quaternary International, 2013, 313-314: 179-193. |
[48] |
Zhang D L, Feng Z D. Holocene climate variations in the Altai Mountains and the surrounding areas: A synjournal of pollen records[J]. Earth-Science Reviews, 2018, 185: 847-869.
doi: 10.1016/j.earscirev.2018.08.007 |
[49] | 张瑞波, 尚华明, 袁玉江, 等. 基于树轮δ13C的阿尔泰山南坡夏季降水变化分析[J]. 中国沙漠, 2015, 35(1): 106-112. |
[Zhang Ruibo, Shang Huaming, Yuan Yujiang, et al. Summer precipitation variation in the southern slope of the Altai Mountains recorded by tree-ring δ 13C[J]. Journal of Desert Research, 2015, 35(1): 106-112. ] | |
[50] |
Sidorova O V, Siegwolf R T W, Myglan V S, et al. The application of tree-rings and stable isotopes for reconstructions of climate conditions in the Russian Altai[J]. Climatic Change, 2013, 120(1): 153-167.
doi: 10.1007/s10584-013-0805-5 |
[51] | White J. W. C. Stable hydrogen isotope ratios in plants: A review of current theory and some potential applications[J]. Stable Isotopes in Ecological Research, 1989, 68: 142-162. |
[52] |
Shi F X, Rao Z G, Li Y X, et al. Precipitation δ18O recorded by the α-cellulose δ18O of plant residues in surface soils: evidence from a broad environment gradient in inland China[J]. Global Biogeochemical Cycles, 2019, 33(11): 1440-1468.
doi: 10.1029/2019GB006418 |
[53] |
Shi F X, Rao Z G, Cao J T, et al. Meltwater is the dominant water source controlling α-cellulose δ18O in a vascular-plant-dominated alpine peatland in the Altai Mountains, Central Asia[J]. Journal of Hydrology, 2019, 572: 192-205.
doi: 10.1016/j.jhydrol.2019.02.030 |
[54] | 刘晓宏, 徐国保, 王文志, 等. 树轮稳定同位素记录: 进展、问题及展望[J]. 第四纪研究, 2015, 35(5): 1245-1260. |
[Liu Xiaohong, Xu Guobao, Wang Wenzhi, et al. Tree-ring stable isotopes proxies: Progress, problems and prospects[J]. Quaternary Sciences, 2015, 35(5): 1245-1260. ] |
[1] | ZHANG Dongliang. Changes of pollen taxa diversity in the arid Central Asia under the Holocene Westerlies Mode: A case study of the Altai Mountains [J]. Arid Zone Research, 2022, 39(3): 667-675. |
|