Arid Zone Research ›› 2025, Vol. 42 ›› Issue (9): 1587-1598.doi: 10.13866/j.azr.2025.09.04
• Land and Water Resources • Previous Articles Next Articles
LIU Wenhui(
), HOU Ying(
), MA Xiaojuan
Received:2025-04-15
Revised:2025-05-21
Online:2025-09-15
Published:2025-09-16
Contact:
HOU Ying
E-mail:12023130960@stu.nxu.edu.cn;holying@nxu.edu.cn
LIU Wenhui, HOU Ying, MA Xiaojuan. Multidimensional spatiotemporal differentiation of the supply-demand relationship of ecosystem water-yielding services in the Liupan Mountain area[J].Arid Zone Research, 2025, 42(9): 1587-1598.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Data sources and pre-processing"
| 数据类型 | 数据分辨率 | 来源及预处理 |
|---|---|---|
| 高程DEM | 30 m | 地理空间数据云( |
| 降水量 | 日值 | 国家青藏高原科学数据中心( |
| 月值,30 m | 高分辨率山地环境制图计划FRMM数据集;月值合并为年值 | |
| 潜在蒸散发量 | 月值,30 m | 高分辨率山地环境制图计划FRMM数据集;月值合并为年值 |
| 土地利用 | 30 m | 武汉大学CLCD土地利用数据集( |
| 中国多时期土地利用遥感监测数据集(CNLUCC)( | ||
| 植物可用水分含量 | 1 km | 基于世界土壤数据库提取sand、slit、clay和有机质图层,根据周文佐经验估算模型计算( |
| 根系限制层深度 | 1 km | 中国土壤深度图( |
| [1] | 欧维新, 刘翠, 陶宇. 太湖流域水供给服务供需时空演变分析[J]. 长江流域资源与环境, 2020, 29(3): 623-633. |
| [Ou Weixin, Liu Cui, Tao Yu. An analysis of spatio-temporal evolution of water supply and demand in Taihu Basin[J]. Resources and Environment in the Yangtze Basin, 2020, 29(3): 623-633.] | |
| [2] | Bispo G B S, Santos R F, Pompeo M L M, et al. The effects of natural forest and eucalyptus plantations on seven water-related ecosystem services in Cerrado landscapes[J]. Perspectives in Ecology and Conservation, 2023, 21: 41-51. |
| [3] | Yang H F, Nie S A, Deng S Q, et al. Evaluation of water yield and its driving factors in the Yangtze River Basin, China[J]. Environmental Earth Sciences, 2023, 82: 429. |
| [4] | An Q M, Yuan X F, Zhang X R, et al. Spatio-temporal interaction and constraint effects between ecosystem services and human activity intensity in Shaanxi Province, China[J]. Ecological Indicators, 2024, 160: 111937. |
| [5] | Wang Z Z, Zhang L W, Li X P, et al. A network perspective for mapping freshwater service flows at the watershed scale[J]. Ecosystem Services, 2020, 45: 101129. |
| [6] | Mengist W, Soromessa T, Legese G. Ecosystem services research in mountainous regions: A systematic literature review on current knowledge and research gaps[J]. Science of the Total Environment, 2020, 702: 134581. |
| [7] | Dai E F, Wang Y H. Identifying driving factors of ecosystem service trade-offs in mountainous region of southwestern China across geomorphic and climatic types[J]. Ecological Indicators, 2024, 158: 111520. |
| [8] | 唐霜, 朱崇京, 高洁, 等. 复杂地形下西南地区水生态系统服务时空变化与影响因素分析[J]. 水土保持学报, 2024, 38(6): 244-252. |
| [Tang Shuang, Zhu Chongjing, Gao Jie, et al. Spatial-temporal variations and influencing factors of water-related ecosystem services in Southwest China under complex terrain[J]. Journal of Soil and Water Conservation, 2024, 38(6): 244-252.] | |
| [9] |
戴尔阜, 王亚慧. 横断山区产水服务空间异质性及归因分析[J]. 地理学报, 2020, 75(3): 607-619.
doi: 10.11821/dlxb202003012 |
|
[Dai Erfu, Wang Yahui. Spatial heterogeneity and driving mechanisms of water yield service in the Hengduan mountain region[J]. Acta Geographica Sinica, 2020, 75(3): 607-619.]
doi: 10.11821/dlxb202003012 |
|
| [10] | Liu Y, Yang Y, Wang Z J, et al. Quantifying water provision service supply, demand, and spatial flow in the Yellow River Basin[J]. Sustainability, 2022, 14: 10093. |
| [11] |
Guan M L, Zhang Q, Wang B L, et al. Spatio-temporal evolution and flow of water provision service balance in Jinghe River Basin[J]. Journal of Resources and Ecology, 2022, 13: 797-812.
doi: 10.5814/j.issn.1674-764x.2022.05.005 |
| [12] |
李智, 苏洋, 舒芹. 基于生态系统服务供需匹配的西北地区生态管理分区[J]. 干旱区地理, 2025, 48(6): 1115-1126.
doi: 10.12118/j.issn.1000-6060.2024.552 |
|
[Li Zhi, Su Yang, Shu Qin. Static-dynamic matching of ecosystem service supply and demand and ecological management zoning in northwest China[J]. Arid Land Geography, 2025, 48(6): 1115-1126.]
doi: 10.12118/j.issn.1000-6060.2024.552 |
|
| [13] | Men D, Pan J H, Sun X W. Spatial and temporal patterns of supply and demand risk for ecosystem services in the Weihe River main stream, NW China[J]. Environmental Science and Pollution Research, 2023, 30: 36952-36966. |
| [14] | Xu M J, Feng Q, Zhang S R, et al. Ecosystem services supply-demand matching and its driving factors: A case study of the Shanxi section of the Yellow River Basin, China[J]. Sustainability, 2023, 15: 11016. |
| [15] |
包玉斌, 王耀宗, 路锋, 等. 六盘山区国土空间生态安全格局构建与分区优化[J]. 干旱区研究, 2023, 40(7): 1172-1183.
doi: 10.13866/j.azr.2023.07.14 |
|
[Bao Yubin, Wang Yaozong, Lu Feng, et al. Construction of an ecological security pattern and zoning optimization for territorial space in the Liupan Mountain area[J]. Arid Zone Research, 2023, 40(7): 1172-1183.]
doi: 10.13866/j.azr.2023.07.14 |
|
| [16] | 张嘉琪, 刘招, 韩忠青, 等. 气候变化下泾河流域蓝绿水变化趋势及预测[J]. 干旱区研究, 2024, 41(12): 2045-2055. |
|
[Zhang Jiaqi, Liu Zhao, Han Zhongqing, et al. Trend change and prediction of blue-green water in the Jinghe River Basin under climate change[J]. Arid Zone Research, 2024, 41(12): 2045-2055.]
doi: 10.13866/j.azr.2024.12.07 |
|
| [17] | Han J Y, Miao C Y, Gou J J, et al. A new daily gridded precipitation dataset for the Chinese mainland based on gauge observations[J]. Earth System Science Data, 2023, 15: 3147-3161. |
| [18] | Zhang Y Y, Li Y G, Ji X, et al. Fine-resolution precipitation mapping in a mountainous watershed: Geostatistical downscaling of TRMM products based on environmental variables[J]. Remote Sensing, 2018, 10: 119. |
| [19] | 周文佐, 刘高焕, 潘剑君. 土坡有效含水量的经验估算研究——以东北黑土为例[J]. 干旱区资源与环境, 2003, 17(4): 88-95. |
| [Zhou Wenzuo, Liu Gaohuan, Pan Jianjun. Empirical estimation of effective water content of soil slopes: A case study of black soil in Northeast China[J]. Journal of Arid Land Resources and Environment, 2003, 17(4): 88-95.] | |
| [20] | Yan F P, Shangguan W, Zhang J, et al. Depth-to-bedrock map of China at a spatial resolution of 100 meters[J]. Scientific Data, 2020, 7: 2. |
| [21] | Zhang L, Dawes W R, Walker G R. Response of mean annual evapotranspiration to vegetation changes at catchment scale[J]. Water Resources Research, 2001, 37: 701-708. |
| [22] | Liu Q, Qiao J J, Li M J, et al. Spatiotemporal heterogeneity of ecosystem service interactions and their drivers at different spatial scales in the Yellow River Basin[J]. Science of the Total Environment, 2024, 908: 168486. |
| [23] | Donohue R J, Roderick M L, McVicar T R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko's hydrological model[J]. Journal of Hydrology, 2012, 436-437: 35-50. |
| [24] | 胡广录, 赵文智. 干旱半干旱区植被生态需水量计算方法评述[J]. 生态学报, 2008, 28(12): 6282-6291. |
| [Hu Guanglu, Zhao Wenzhi. Review of methods for calculating ecological water demand of vegetation in arid and semi-arid zones[J]. Acta Ecologica Sinica, 2008, 28(12): 6282-6291.] | |
| [25] | Chen J Y, Jiang B, Bai Y, et al. Quantifying ecosystem services supply and demand shortfalls and mismatches for management optimisation[J]. Science of the Total Environment, 2019, 650: 1426-1439. |
| [26] | 甘肃省水利厅. 甘肃省河流泥沙公报(2023)[M]. 兰州: 甘肃科学技术出版社, 2023. |
| [Gansu Water Resources Department. Gansu River Sediment Bulletin (2023)[M]. Lanzhou: Gansu Science and Technology Press, 2023.] | |
| [27] | Liu J M, Pei X T, Zhu W Y, et al. Water-related ecosystem services interactions and their natural-human activity drivers: Implications for ecological protection and restoration[J]. Journal of Environmental Management, 2024, 352: 120101. |
| [28] | Chen D S, Li J, Yang X N, et al. Quantifying water provision service supply, demand and spatial flow for land use optimization: A case study in the YanHe watershed[J]. Ecosystem Services, 2020, 43: 101117. |
| [29] | 万志纲, 丁文广, 蒲晓婷, 等. 祁连山国家公园产水量时空变化及驱动因素分析[J]. 水土保持学报, 2023, 37(6): 161-169. |
| [Wan Zhigang, Ding Wenguang, Pu Xiaoting, et al. Analysis of the spatial-temporal variation and driving factors of water yield in Qilian Mountain National Park[J]. Journal of Soil and Water Conservation, 2023, 37(6): 161-169.] | |
| [30] | Wang Y H, Dai E F. Spatial-temporal changes in ecosystem services and the trade-off relationship in mountain regions: A case study of Hengduan Mountain region in Southwest China[J]. Journal of Cleaner Production, 2020, 264: 121573. |
| [31] |
丁诗雨, 贾夏, 赵永华, 等. 秦巴山生态功能区生态系统服务供需关系时空演变研究[J]. 生态环境学报, 2023, 32(12): 2236-2248.
doi: 10.16258/j.cnki.1674-5906.2023.12.015 |
|
[Ding Shiyu, Jia Xia, Zhao Yonghua, et al. Spatial-temporal patterns of supply and demand of ecosystem services in the ecological function area of Qin-Ba Mountains[J]. Ecology and Environment Sciences, 2023, 32(12): 2236-2248.]
doi: 10.16258/j.cnki.1674-5906.2023.12.015 |
|
| [32] | Yu Y Y, Li J, Han L Q, et al. Research on ecological compensation based on the supply and demand of ecosystem services in the Qinling-Daba Mountains[J]. Ecological Indicators, 2023, 154: 110687. |
| [33] | Chen X, Lin S Y, Tian J, et al. Simulation study on water yield service flow based on the InVEST-Geoda-Gephi network: A case study on Wuyi Mountains, China[J]. Ecological Indicators, 2024, 159: 111694. |
| [34] | Li J H, Xie B G, Gao C, et al. Impacts of natural and human factors on water-related ecosystem services in the Dongting Lake Basin[J]. Journal of Cleaner Production, 2022, 370: 133400. |
| [35] | 王玉纯, 赵军, 付杰文. 退耕还林还草工程对干旱区内陆河流域生态系统服务的影响[J]. 生态科学, 2021, 40(6): 56-66. |
| [Wang Yuchun, Zhao Jun, Fu Jiewen. Effects of the grain for green program on the ecosystem services of inland river basin in arid area[J]. Ecological Science, 2021, 40(6): 56-66.] | |
| [36] | 庄少豪. 黄土高原生态系统服务功能对植被恢复的响应关系研究[D]. 西安: 西安理工大学, 2020. |
| [Zhuang Shaohao. Study on the Response Relationship of Ecosystem Service Funtion of Loess Plateau to Vegetation Restortion[D]. Xi'an: Xi'an University of Technology, 2020.] | |
| [37] | Qiu H H, Zhang J Y, Han H R, et al. Study on the impact of vegetation change on ecosystem services in the Loess Plateau, China[J]. Ecological Indicators, 2023, 154: 110812. |
| [38] |
张耀文, 张勃, 姚荣鹏, 等. 2000—2020年渭河流域植被覆盖度及产水量时空变化[J]. 中国沙漠, 2022, 42(2): 223-233.
doi: 10.7522/j.issn.1000-694X.2022.00018 |
|
[Zhang Yaowen, Zhang Bo, Yao Rongpeng, et al. Temporal and spatial changes of vegetation coverage and water production in the Weihe River Basin from 2000 to 2020[J]. Journal of Desert Research, 2022, 42(2): 223-233.]
doi: 10.7522/j.issn.1000-694X.2022.00018 |
|
| [39] | 胡金虎, 丁建丽, 张子鹏, 等. 近30年吐鲁番哈密地区植被生态需水估算[J]. 生态学报, 2024, 44(19): 8699-8715. |
| [Hu Jinhu, Ding Jianli, Zhang Zipeng, et al. Estimation of vegetation ecological water demand in Tuha area in the past 30 years[J]. Acta Ecologica Sinica, 2024, 44(19): 8699-8715.] | |
| [40] |
朱建佳, 刘金铜, 梁红柱, 等. 太行山区水资源供需关系的垂直梯度特征[J]. 应用生态学报, 2019, 30(2): 472-480.
doi: 10.13287/j.1001-9332.201902.008 |
|
[Zhu Jianjia, Liu Jintong, Liang Hongzhu, et al. Vertical gradients of water supply and demand in Taihang Mountains, China[J]. Chinese Journal of Applied Ecology, 2019, 30(2): 472-480.]
doi: 10.13287/j.1001-9332.201902.008 |
| [1] | ZHANG Kun, WU Xinping, LIU Yongqiang, ZHANG Lifang, QIN Yan, YANG Yulu, GAN Hui. Spatiotemporal evolution and prediction of carbon storage in Xinjiang using the PLUS-InVEST model [J]. Arid Zone Research, 2025, 42(9): 1715-1725. |
| [2] | DUAN Baoling, FENG Qiang, WANG Jing, ZHANG Wei. The supply-demand risks of ecosystem services and threshold characteristics of their influencing factors in Fenhe River Basin [J]. Arid Zone Research, 2025, 42(9): 1726-1741. |
| [3] | LIU Xiaoming, ZHENG Shiyan, QIAO Zhanming. Dynamic simulation of land use change and habitat quality in the Three River Source Region based on the PLUS-InVEST models [J]. Arid Zone Research, 2025, 42(6): 1080-1092. |
| [4] | LI Zhiming, ZHANG Guofei, XING Jie, YANG Lei, WANG Weidong, CAO Juan. Spatiotemporal evolution of the ecological security pattern in Longnan City based on the MSPA-InVEST model [J]. Arid Zone Research, 2025, 42(6): 1103-1113. |
| [5] | WU Zhaoqiao, LIN Fei, NIU Junjie, GENG Tianwei. Response of ecosystem service to land use pattern change in the Shanxi central urban agglomeration [J]. Arid Zone Research, 2024, 41(7): 1153-1166. |
| [6] | LI Bingjie, FAN Zhitao, QU Zhicheng, YAO Shunyu, SU Xiashu, LIU Dongwei, WANG Lixin. Evaluation and prediction of ecosystem carbon storage in the Inner Mongolia section of the Yellow River Basin based on the InVEST-PLUS model [J]. Arid Zone Research, 2024, 41(7): 1217-1227. |
| [7] | ZHANG Shunxin, WU Zihao, YAN Qingwu, LI Gui’e, MU Shouguo. Spatiotemporal changes in the ecosystem carbon storage on the northern slope of the Tianshan Mountains and simulations based on the PLUS-InVEST model [J]. Arid Zone Research, 2024, 41(7): 1228-1237. |
| [8] | DONG Pengbei, REN Zongping, LI Peng, WANG Kaibo, HE Guokai, WANG Pu. Ecosystem services trade-offs and synergies drived by landuse changes in Ningxia [J]. Arid Zone Research, 2024, 41(6): 1032-1044. |
| [9] | GAO Yayu, SONG Yu, ZHAO Tinghong, GAO Jinfang, HE Wenbo, LI Zexia. Spatiotemporal evolution of water yield in the lower Malian River Basin [J]. Arid Zone Research, 2024, 41(5): 776-787. |
| [10] | LIU Rulong, ZHAO Yuanyuan, CHEN Guoqing, CHI Wenfeng, LIU Zhengjia. Assessment of habitat quality in the Yellow River Basin in Inner Mongolia from 1990 to 2020 [J]. Arid Zone Research, 2024, 41(4): 674-683. |
| [11] | XU Mingjing, FENG Qiang, LYU Meng. Tradeoffs of ecosystem services and their influencing factors: A case study of the Shanxi Section of the Yellow River Basin [J]. Arid Zone Research, 2024, 41(3): 467-479. |
| [12] | LI Jiake, SHAO Zhanlin. Spatiotemporal evolution and prediction of carbon stock in Urumqi City based on PLUS and InVEST models [J]. Arid Zone Research, 2024, 41(3): 499-508. |
| [13] | YAN Li, CAO Guangchao, KANG Ligang, LIU Menglin, YE Deli. Analysis of spatial and temporal changes in habitat quality and driving factors in Gonghe County using the InVEST model [J]. Arid Zone Research, 2024, 41(2): 314-325. |
| [14] | SHEN Cao,REN Zongping,LI Peng,WANG Kaibo,LU Kexin,REN Zhengyan,WEI Xiaoyan. Identification of priority areas for ecological compensation under soil and water conservation in Ningxia [J]. Arid Zone Research, 2023, 40(9): 1527-1536. |
| [15] | ZHANG Xiaomin, ZHANG Dongmei, ZHANG Wei. Effects of human activities on carbon storage in the Irtysh River Basin [J]. Arid Zone Research, 2023, 40(8): 1333-1345. |
|
||