Arid Zone Research ›› 2025, Vol. 42 ›› Issue (8): 1379-1383.doi: 10.13866/j.azr.2025.08.03
• Weather and Climate • Previous Articles Next Articles
SHEN Yanling1,2,3(
), CAO Xiaomin1,2(
), MA Yuancang1,2, WANG Zhenhai4
Received:2025-03-21
Revised:2025-06-18
Online:2025-08-15
Published:2025-11-24
SHEN Yanling, CAO Xiaomin, MA Yuancang, WANG Zhenhai. Assessment of the applicability of CLDAS and GPM precipitation data for precipitation in Qinghai Province[J].Arid Zone Research, 2025, 42(8): 1379-1383.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
| [1] |
黄建平, 刘玉芝, 王天河, 等. 青藏高原及周边地区气溶胶、云和水汽收支研究进展[J]. 高原气象, 2021, 40(6): 1225-1240.
doi: 10.7522/j.issn.1000-0534.2021.zk012 |
|
[Huang Jianping, Liu Yuzhi, Wang Tianhe, et al. An overview of the aerosol and cloud properties and water vapor budget over the Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2021, 40(6): 1225-1240.]
doi: 10.7522/j.issn.1000-0534.2021.zk012 |
|
| [2] | 尹泓琳. 三江源典型流域降雨—径流模拟及驱动因素研究[D]. 西宁: 青海大学, 2019. |
| [Yin Honglin. Study on Rainfall-runoff Simulation and Driving Factors in Typical Watersheds of the Three-river Headwaters[D]. Xining: Qinghai University, 2019.] | |
| [3] |
谷昌军, 张镱锂, 刘林山, 等. 2000—2020年三江源草地绿度变化及其对气候变化的响应[J]. 地理科学, 2025, 45(1): 214-226.
doi: 10.13249/j.cnki.sgs.20220774 |
| [Gu Changjun, Zhang Yili, Liu Linshan, et al. Grassland greenness change and its response to climate change in Three River Headwater region in 2000-2020[J]. Geographical Science, 2025, 45(1): 214-226.] | |
| [4] |
Zheng Y, Xue M, Li B, et al. Spatial characteristics of extreme rainfall over China with hourly through 24-hour accumulation periods based on national-level hourly rain gauge data[J]. Advances in Atmospheric Sciences, 2016, 33(11): 1218-1232.
doi: 10.1007/s00376-016-6128-5 |
| [5] | Yao X, Zhang X, Ma J. Characteristics of the meridionally oriented shear lines over the Tibetan Plateau and its relationship with rainstorms in the boreal summer half-year[J]. Journal of Tropical Meteorology, 2020, 26(1): 95-104. |
| [6] |
Chen H, Yu R, Shen Y. A new method to compare hourly rainfall between station observations and satellite products over central-eastern China[J]. Journal of Meteorological Research, 2016, 30(5): 737-757.
doi: 10.1007/s13351-016-6002-5 |
| [7] | 金晓龙, 邵华, 张弛, 等. GPM 卫星降水数据在天山山区的适用性分析[J]. 自然资源学报, 2016, 31(12): 2074-2085. |
|
[Jin Xiaolong, Shao Hua, Zhang Chi, et al. The applicability evaluation of three satellite products in Tianshan Mountains[J]. Journal of Natural Resources, 2016, 31(12): 2074-2085.]
doi: 10.11849/zrzyxb.20160057 |
|
| [8] |
Kidd C, Levizzani V. Status of satellite precipitation retrievals[J]. Hydrology and Earth System Sciences, 2011, 15(4): 1109-1116.
doi: 10.5194/hess-15-1109-2011 |
| [9] |
Zhang S, Wang D, Qin Z, et al. Assessment of the GPM and TRMM precipitation products using the rain gauge network over the Tibetan Plateau[J]. Journal of Meteorological Research, 2018, 32(2): 324-336.
doi: 10.1007/s13351-018-7067-0 |
| [10] |
师春香, 谢正辉. 基于静止气象卫星观测的降水时间降尺度研究[J]. 地理科学进展, 2008, 27(4): 15-22.
doi: 10.11820/dlkxjz.2008.04.003 |
| [Shi Chunxiang, Xie Zhenghui. A time downscaling scheme of precipitation by using geostationary meteorological satellite data[J]. Journal of Advances in Geographic Sciences, 2008, 27(4): 15-22.] | |
| [11] | 张蒙, 黄安宁, 计晓龙, 等. 卫星反演降水资料在青藏高原地区的适用性分析[J]. 高原气象, 2016, 35(1): 34-42. |
| [Zhang Meng, Huang Anning, Ji Xiaolong, et al. Validation of satellite precipitation products over Qinghai-Xizang Plateau region[J]. Plateau Meteorology, 2016, 35(1): 34-42.] | |
| [12] | Wu L, Zhai P. Validation of daily precipitation from two high-resolution satellite precipitation datasets over the Tibetan Plateau and the regions to its east[J]. Journal of Meteorological Research, 2012, 26(6): 735-745. |
| [13] |
余坤伦, 张寅生, 马宁, 等. GPM和TRMM遥感降水产品在青藏高原中部的适用性评估[J]. 干旱区研究, 2018, 35(6): 1373-1381.
doi: 10.13866/j.azr.2018.06.14 |
|
[Yu Kunlun, Zhang Yinsheng, Ma Ning, et al. Applicability of GPM and TRMM remote sensing precipitation products in the central Xizang Plateau[J]. Arid Zone Research, 2018, 35(6): 1373-1381.]
doi: 10.13866/j.azr.2018.06.14 |
|
| [14] |
Mou T, Zheng D. Assessment of GPM and TRMM precipitation products over Singapore[J]. Remote Sensing, 2017, 9(7): 720-742.
doi: 10.3390/rs9070720 |
| [15] |
Gao C, Liu F. Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau[J]. Hydrology and Earth System Sciences, 2013, 17(2): 837-859.
doi: 10.5194/hess-17-837-2013 |
| [16] |
Lin Z, Yao X, Du J, et al. Refined evaluation of satellite precipitation products against rain gauge observations along the Sichuan railway[J]. Journal of Meteorological Research, 2022, 36(5): 779-797.
doi: 10.1007/s13351-022-1226-z |
| [17] |
Habib E, Elsaadani M, Haile A T. Climatology-focused evaluation of CMORPH and TMPA satellite rainfall products over the Nile basin[J]. Journal of Applied Meteorology and Climatology, 2012, 51(12): 2105-2121.
doi: 10.1175/JAMC-D-11-0252.1 |
| [18] |
Wang H, Yuan Y, Zeng S, et al. Evaluation of satellite-based precipitation products from GPM IMERG and GSMaP over the Three-River Headwaters region, China[J]. Hydrology Research, 2021, 52(6): 1328-1343.
doi: 10.2166/nh.2021.029 |
| [19] | Wang Y, Miao C, Zhao X, et al. Evaluation of the GPM IMERG product at the hourly timescale over China[J]. Atmospheric Research, 2023, 10(285): 106-126. |
| [20] |
Tian F, Hou S, Yang L, et al. How does the evaluation of the GPM IMERG rainfall product depend on gauge density and rainfall intensity[J]. Journal of Hydrometeorology, 2018, 19(2): 339-349.
doi: 10.1175/JHM-D-17-0161.1 |
| [21] |
Hou A Y, Kakar R K. The global precipitation measurement mission[J]. Bulletin of the American Meteorological Society, 2014, 95(5): 701-722.
doi: 10.1175/BAMS-D-13-00164.1 |
| [22] |
粟运, 师春香, 毛文书, 等. 基于CLDAS-Prcp多源融合降水产品的WRF-Hydro模式在綦江流域的水文效用[J]. 高原气象, 2022, 41(3): 617-629.
doi: 10.7522/j.issn.1000-0534.2021.00073 |
|
[Su Yun, Shi Chunxiang, Mao Wenshu, et al. Hydrological utility of CLDAS-Prcp multi-source fusion precipitation products in Qijiang River Basin: Taking WRF-Hydro Model as an example[J]. Plateau Meteorology, 2022, 41(3): 617-629.]
doi: 10.7522/j.issn.1000-0534.2021.00073 |
|
| [23] |
Sun S, Shi C, Pan Y, et al. Applicability assessment of the 1998-2018 CLDAS multi-source precipitation fusion dataset over China[J]. Journal of Meteorological Research, 2020, 34(4): 879-892.
doi: 10.1007/s13351-020-9101-2 |
| [24] |
Zhang X, Yao X, Ma J, et al. Climatology of transverse shear lines related to heavy rainfall over the Tibetan Plateau during boreal summer[J]. Journal of Meteorological Research, 2016, 30(6): 915-926.
doi: 10.1007/s13351-016-6952-7 |
| [25] |
唐国强, 万玮, 曾子悦, 等. 全球降水测量(GPM)计划及其最新进展综述[J]. 遥感技术与应用, 2015, 30(4): 607-615.
doi: 10.11873/j.issn.1004-0323.2015.4.0607 |
| [Tang Guoqiang, Wan Wei, Zeng Ziyue, et al. An overview of the global precipitation measurement (GPM) mission and its latest development[J]. Remote Sensing Technology and Application, 2015, 30(4): 607-615.] | |
| [26] | 任鹏臻, 邸少宇, 刘锐, 等. GPM IMERG卫星降水数据在青海的适用性评价[J]. 青海大学学报, 2024, 42(4): 56-63. |
| [Ren Pengzhen, Di Shaoyu, Liu Rui, et al. Applicability evaluation of GPM IMERG satellite precipitation data in Qinghai[J]. Journal of Qinghai University, 2024, 42(4): 56-63.] | |
| [27] | 中国气象局. 地面气象观测规范[M]. 北京: 气象出版社, 2003. |
| [China Meteorological Administration. The Criterion of Surface Meteorological Observation[M]. Beijing: China Meteorological Press, 2003.] | |
| [28] |
Zhang S, Wang D, Qin Z, et al. Assessment of the GPM and TRMM precipitation products using the rain gauge network over the Tibetan Plateau[J]. Journal of Meteorological Research, 2018, 32(3): 324-336.
doi: 10.1007/s13351-018-7067-0 |
| [29] |
Ebert E, Elizabeth J, Kidd C, et al. Comparison of near-real-time precipitation estimates from satellite observations and numerical models[J]. Bulletin of the American Meteorological Society, 2007, 88(8): 47-64.
doi: 10.1175/BAMS-88-1-47 |
| [30] |
Szolgay J, Parajka J, Kohnova S, et al. Comparison of mapping approaches of design annual maximum daily precipitation[J]. Atmospheric Research, 2009, 92(3): 289-307.
doi: 10.1016/j.atmosres.2009.01.009 |
| [31] |
Yu R, Li J, Chen H, et al. Progress in studies of the precipitation diurnal variation over contiguous China[J]. Journal of Meteorological Research, 2014, 28(5): 877-902.
doi: 10.1007/s13351-014-3272-7 |
| [32] | 吴璐. 青藏高原与其东侧四川盆地降水日变化差异研究[D]. 北京: 中国气象科学研究院, 2012. |
| [Wu Lu. Discrepancy of Precipitation Diurnal Cycles between the Tibetan Plateau and its Neighboring Sichuan basin in Warm Season[D]. Beijing: Chinese Academy of Meteorological Sciences, 2012.] | |
| [33] | 白爱娟, 刘长海, 刘晓东, 等. TRMM多卫星降水分析资料揭示的青藏高原及其周边地区夏季降水日变化[J]. 地球物理学报, 2008, 51(3): 704-714. |
| [Bai Aijuan, Liu Changhai, Liu Xiaodong. Diurnal variation of summer rainfall over the Tibetan Plateau and its neighboring regions revealed by TRMM multi-satellite precipitation analysis[J]. Chinese Journal of Geophysics, 2008, 51(3): 704-714.] | |
| [34] | Liu X, Bai A, Liu C. Diurnal variations of summertime precipitation over the Tibetan Plateau in relation to orographically-induced regional circulations[J]. Environmental Research Letters, 2009, 4(4): 45-73. |
| [35] |
Li J. Hourly station-based precipitation characteristics over the Tibetan Plateau[J]. International Journal of Climatology, 2018, 38(3): 1560-1570.
doi: 10.1002/joc.2018.38.issue-3 |
| [36] | Wu Y, Huang A, Huang D, et al. Diurnal variations of summer precipitation over the regions east to Tibetan Plateau[J]. Climate Dynamics, 2018, 5(1): 4287-4307. |
| [37] |
Yu L, Ma L, Li H, et al. Assessment of high-resolution satellite rainfall products over a gradually elevating mountainous terrain based on a high-density rain gauge network[J]. International Journal of Remote Sensing, 2020, 41(14): 5620-5644.
doi: 10.1080/01431161.2020.1734255 |
| [38] |
Tang G, Long D, Hong Y, et al. Documentation of multifactorial relationships between precipitation and topography of the Tibetan Plateau using spaceborne precipitation radars[J]. Remote Sensing of Environment, 2018, 208(1): 82-96.
doi: 10.1016/j.rse.2018.02.007 |
| [39] |
Li Q, Wei J, Yin J, et al. Multiscale comparative evaluation of the GPM and TRMM precipitation products against ground precipitation observations over Chinese Tibetan Plateau[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14: 2295-2313.
doi: 10.1109/JSTARS.4609443 |
| [1] | LI Moyu, DONG Shaorui, GUO Yingxiang. Applicability evaluation of three kinds of precipitation products in eastern Qinghai-Xizang Plateau [J]. Arid Zone Research, 2025, 42(7): 1173-1183. |
| [2] | XIE Gang, WANG Tiantian, YU Tao, DONG Jingwei, CHEN Shiqiang, WANG Mengxiao, ZHANG Shengjie, ZHANG Haoming. A preliminary study on the evolution of water temperature in the estuary of the Qinghai Lake [J]. Arid Zone Research, 2024, 41(9): 1503-1513. |
| [3] | CUI Guolong, LI Qiangfeng, GAO Ying, LIU Weijun, ZHANG Mei. Characteristics of soil microbial communities structure and influencing factors in typical vegetation in the Beichuan River Source Area of Datong, Qinghai [J]. Arid Zone Research, 2024, 41(7): 1195-1206. |
| [4] | CAI Yuqin, QI Donglin, WANG Liefu, LI Haifeng, ZHANG Deqin. Spatial and temporal evolution characteristics of different grades of cold days in Qinghai Province [J]. Arid Zone Research, 2024, 41(5): 742-752. |
| [5] | WANG Xueying, GU Huanghe, DAI Bin, ZHANG Hanwen, YU Zhongbo. Simulation of climate characteristics in the Qinghai-Tibet Plateau by regional climate models at different horizontal resolutions [J]. Arid Zone Research, 2024, 41(3): 363-374. |
| [6] | WANG Qihua, LIN Chunying, LIU Xiao, ZHANG Liyan, ZHAO Zhanxiu, ZHANG Boyue, GONG Jing. Observational analysis of a hailstorm event in Northeast Qinghai [J]. Arid Zone Research, 2024, 41(2): 200-210. |
| [7] | YAN Li, CAO Guangchao, KANG Ligang, LIU Menglin, YE Deli. Analysis of spatial and temporal changes in habitat quality and driving factors in Gonghe County using the InVEST model [J]. Arid Zone Research, 2024, 41(2): 314-325. |
| [8] | QIMEI Lamu, ZHENG Cheng, YUAN Liuhuan, WU Peitong, TAN Kai, SHEN Qiaotian, SHI Haijing. Spatial-temporal dynamics of vegetation light use efficiency and its driving factors on the Qinghai-Xizang Plateau [J]. Arid Zone Research, 2024, 41(10): 1731-1739. |
| [9] | LI Yongguang, YUAN Guanghui. Biophysical effects of the different underlying factors on land the surface temperature in the Qinghai Lake Basin [J]. Arid Zone Research, 2024, 41(1): 24-35. |
| [10] | SUN Kuan, SUN Xueyan, TANG Yan, ZHANG Yaling, LIU Fugang, FAN Kesheng, YANG Ziqiong, QU Zhiqiang. Temporal and spatial variations in multi-year surface sensible heat flux in Qinghai Province [J]. Arid Zone Research, 2024, 41(1): 36-49. |
| [11] | GUAN Yuqi, LI Guang, PAN Xue, XU Guorong, WEI Xingxing, LIU Hao, WU Jiangqi. Effects of changing rainfall frequency on the soil carbon, nitrogen, and phosphorus ecostochimetrics in the Gahai wet meadow, Gannan [J]. Arid Zone Research, 2023, 40(6): 916-925. |
| [12] | QIU Xunxun, CAO Guangchao, ZHANG Jinhu, ZHANG Zhuo, LIU Menglin. Distribution characteristics of carbon density in the arbor and soil layers of Qinghai spruce forest on the southern slope of Qilian Mountains with altitude [J]. Arid Zone Research, 2023, 40(4): 615-622. |
| [13] | KANG Ligang, CAO Shengkui, CAO Guangchao, YANG Yufan, YAN Li, WANG Youcai. Temporal and spatial changes of evapotranspiration in the Shaliu River Basin of Qinghai Lake [J]. Arid Zone Research, 2023, 40(3): 358-372. |
| [14] | LI Suyun, QI Donglin, WEN Tingting, SHI Feifei, QIAO Bin, XIAO Jianshe. The variation characteristics and influencing factors of vapor pressure deficit in Qinghai Province from 1961 to 2020 [J]. Arid Zone Research, 2023, 40(2): 173-181. |
| [15] | WU Xueqing, ZHANG Lele, GAO Liming, LI Yankun, LIU Xuanchen. Dynamic change and driving force of net primary productivity in Qinghai Lake Basin [J]. Arid Zone Research, 2023, 40(11): 1824-1832. |
|
||