干旱区研究 ›› 2025, Vol. 42 ›› Issue (8): 1404-1414.doi: 10.13866/j.azr.2025.08.05 cstr: 32277.14.AZR.20250805
李紫萌1,2(
), 杨莲梅2(
), 阿不都外力·阿不力克木1
收稿日期:2025-03-25
修回日期:2025-06-05
出版日期:2025-08-15
发布日期:2025-11-24
通讯作者:
杨莲梅. E-mail: yanglm@idm.cn作者简介:李紫萌(2001-),女,硕士研究生,主要从事云降水物理研究. E-mail: lizmv5@163.com
基金资助:
LI Zimeng1,2(
), YANG Lianmei2(
), Abuduwaili ABULIKEMU1
Received:2025-03-25
Revised:2025-06-05
Published:2025-08-15
Online:2025-11-24
摘要: 利用2022—2023年新疆伊犁河谷地区新源站和伊宁站两个站点的激光云高仪观测资料,结合地形及气候条件统计并分析两个区域云出现频率(Cloud Frequency,CF)、云层数和云底高度出现频率(Cloud Base Height Occurrence Frequency,CBHOF)等云宏观参数;并且利用雨滴谱数据对降水云进行分类及特征分析。结果表明:(1) 两个站点云宏观参数存在许多共性特征。新源站和伊宁站CF日变化均表现为白天云少、晚上云多的单峰型,夏季受太阳辐射昼夜差异较大的影响,日变幅比其他季节大。两个站点CF年平均值约为35%,高云全年偏少。夏季中云多、低云少,蒸散发强烈,可能是形成干旱多发季的原因。11月─次年3月中云略低于低云。(2) 两个站点的云宏观特征差异主要受水汽输送和地形强迫影响。两个站点主要以单层云为主,受水汽和地形垂直抬升影响,新源站比伊宁站更容易产生双层云和多层云。CBHOF存在显著季节差异,春秋季云分布特征倾向不显著,夏季以中云为主,冬季两地低云集中且峰值高度差异显著。(3) 伊犁河谷地区东侧降水多于西侧,地区层状云降水显著多于对流云降水。受地形抬升作用,新源站对流云垂直发展更为旺盛,其对流强度明显高于伊宁站。两地层状云特征受地形影响较小,差异不显著。
李紫萌, 杨莲梅, 阿不都外力·阿不力克木. 基于激光云高仪观测的伊犁河谷云宏观特征[J]. 干旱区研究, 2025, 42(8): 1404-1414.
LI Zimeng, YANG Lianmei, Abuduwaili ABULIKEMU. Macroscopic characterization of clouds in the Ili River Valley based on laser ceilometer observations[J]. Arid Zone Research, 2025, 42(8): 1404-1414.
| [1] |
Ramanathan V, Cess R D, Harrison E F, et al. Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment[J]. Science, 1989, 243(4887): 57-63.
pmid: 17780422 |
| [2] | 盛裴轩, 毛节泰, 李建国, 等. 大气物理学(第二版)[M]. 北京: 北京大学出版社, 2013 |
| [Sheng Peixuan, Mao Jietai, Li Jianguo, et al. Atmospheric Physics[M]. 2ndEd. Beijing: Peking University Press, 2013.] | |
| [3] |
Costa-Surós M, Calbó J, González J A, et al. Behavior of cloud base height from ceilometer measurements[J]. Atmospheric Research, 2013, 127: 64-76.
doi: 10.1016/j.atmosres.2013.02.005 |
| [4] | 郭婧晗, 薛惠文, 刘晓阳. 北京地区夏季云出现概率及云底高度分布的特征分析[J]. 北京大学学报(自然科学版), 2015, 51(4): 718-724. |
| [Guo Jinghan, Xue Huiwen, Liu Xiaoyang. Characteristics of cloud occurrence frequency and cloud base height in summer over Beijing[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(4): 718-724.] | |
| [5] | 汪天怡, 李德俊, 陈英英, 等. 基于云高仪探测数据的湖北省襄阳市云宏观特征分析[J]. 暴雨灾害, 2024, 43(2): 234-242. |
| [Wang Tianyi, Li Dejun, Chen Yingying, et al. Analysis of cloud macro-physical characteristics in Xiangyang of Hubei Province based on ceilometer data[J]. Torrential Rain and Disasters, 2024, 43(2): 234-242.] | |
| [6] | 李思腾, 马舒庆, 高玉春, 等. 毫米波云雷达与激光云高仪观测数据对比分析[J]. 气象, 2015, 41(2): 212-218. |
| [Li Siteng, Ma Shuqing, Gao Yuchun, et al. Comparative analysis of cloud base heights obsreved by cloud radar and ceilmeter[J]. Meteorological Monthly, 2015, 41(2): 212-218.] | |
| [7] | 顾桃峰, 岳海燕, 伍光胜, 等. 毫米波云雷达与激光云高仪气象探测性能对比分析[J]. 环境科学学报, 2023, 43(1): 275-283. |
| [Gu Taofeng, Yue Haiyan, Wu Guangsheng, et al. Comparative analysis of meteorological detection performance between millimeter-wave cloud radar and altimeter[J]. Acta Scientiae Circumstantiae, 2023, 43(1): 275-283.] | |
| [8] |
Chiao S, Lin Y L, Kaplan M L. Numerical study of the orographic forcing of heavy precipitation during MAP IOP-2B[J]. Monthly Weather Review, 2004, 132(9): 2184-2203.
doi: 10.1175/1520-0493(2004)132<2184:NSOTOF>2.0.CO;2 |
| [9] | 刘姝, 周煜, 王福侠, 等. 太行山地形与水汽特征对“23·7”河北中部极端降水形成的影响机制[J]. 气候与环境研究, 2025, 30(1): 24-38. |
| [Liu Shu, Zhou Yu, Wang Fuxia, et al. Influence mechanism of Taihang Mountain topography and water vapor characteristics on the formation of “23·7”extreme precipitation event in central Hebei[J]. Climatic and Environmental Research, 2025, 30(1): 24-38.] | |
| [10] |
付双喜, 张洪芬, 杨丽杰, 等. 地形影响下祁连山北麓不同类型降水特征对比分析[J]. 干旱区研究, 2021, 38(5): 1226-1234.
doi: 10.13866/j.azr.2021.05.04 |
|
[Fu Shuangxi, Zhang Hongfen, Yang Lijie, et al. Comparative analysis of different types of precipitation characteristics in the northern foot of Qilian Mountain under the influence of topography[J]. Arid Zone Research, 2021, 38(5): 1226-1234.]
doi: 10.13866/j.azr.2021.05.04 |
|
| [11] | 刘恩弘. 中天山北坡风切变层对地形云降水影响的观测和模拟研究[D]. 南京: 南京信息工程大学, 2022. |
| [Liu Enhong. Observation and Simulation Studies on the Influence of Wind Shear Layers on Topographic Cloud Precipitation on the Northern Slopes of the Central Tian Shan[D]. Nanjing: Nanjing University of Information Science & Technology, 2022.] | |
| [12] | 何颖. 基于Ka波段雷达的六盘山地形云和降水的动力和微物理特征研究[D]. 南京: 南京信息工程大学, 2023. |
| [He Ying. A Comparative Study on the Dynamic and Microphysical Properties of Topographic Cloud and Precipitation over Different Topographic Positions of the Liupan Mountains by Ka-band Cloud Radar[D]. Nanjing: Nanjing University of Information Science & Technology, 2023.] | |
| [13] |
杨涛, 杨莲梅, 李建刚, 等. 中国天山西部区域云降水物理野外观测科学试验研究若干进展[J]. 干旱区地理, 2023, 46(10): 1602-1611.
doi: 10.12118/j.issn.1000-6060.2023.056 |
|
[Yang Tao, Yang Lianmei, Li Jiangang, et al. Progress of the scientific experimental for cloud and precipitation physical observation in the western Tianshan Mountains of China[J]. Arid Land Geography, 2023, 46(10): 1602-1611.]
doi: 10.12118/j.issn.1000-6060.2023.056 |
|
| [14] |
Löffler-Mang M, Joss J. An optical disdrometer for measuring size and velocity of hydrometeors[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(2): 130-139.
doi: 10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2 |
| [15] |
Wang J, Rossow W B. Effects of cloud vertical structure on atmospheric circulation in the GISS GCM[J]. Journal of Climate, 1998, 11(11): 3010-3029.
doi: 10.1175/1520-0442(1998)011<3010:EOCVSO>2.0.CO;2 |
| [16] |
Bringi V N, Chandrasekar V, Hubbert J, et al. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis[J]. Journal of the Atmospheric Sciences, 2003, 60(2): 354-365.
doi: 10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2 |
| [17] |
李帅, 侯小刚, 崔宇, 等. 基于FY-2F资料的新疆区域云系特征研究[J]. 高原气象, 2019, 38(3): 617-624.
doi: 10.7522/j.issn.1000-0534.2018.00101 |
|
[Li Shuai, Hou Xiaogang, Cui Yu, et al. Research on cloud characteristics based on FY-2F satellite data in Xinjiang region[J]. Plateau Meteorology, 2019, 38(3): 617-624.]
doi: 10.7522/j.issn.1000-0534.2018.00101 |
|
| [18] | 李昀英, 宇如聪, 徐幼平, 等. 中国南方地区层状云的形成和日变化特征分析[J]. 气象学报, 2003, 61(6): 733-743. |
| [Li Yunying, Yu Rucong, Xu Youping, et al. The formation and digital changes of stratiform clouds in Southern China[J]. Acta Meteorologica Sinica, 2003, 61(6): 733-743.] | |
| [19] |
Ge J, Wang Z, Wang C, et al. Diurnal variations of global clouds observed from the CATS spaceborne lidar and their links to large-scale meteorological factors[J]. Climate Dynamics, 2021, 57(9-10): 2637-2651.
doi: 10.1007/s00382-021-05829-2 |
| [20] |
黄秋霞, 赵勇, 何清. 新疆伊犁河谷夏季降水日变化特征[J]. 冰川冻土, 2015, 37(2): 369-375.
doi: 10.7522/j.issn.1000-0240.2015.0040 |
|
[Huang Qiuxia, Zhao Yong, He Qing. The daily variation characteristics of summer precipitation over the Yili River Valley, Xinjiang[J]. Journal of Glaciology and Geocryology, 2015, 37(2): 369-375.]
doi: 10.7522/j.issn.1000-0240.2015.0040 |
|
| [21] |
郭玉琳, 赵勇, 周雅蔓, 等. 新疆天山山区夏季降水日变化特征及其与海拔高度关系[J]. 干旱区地理, 2022, 45(1): 57-65.
doi: 10.12118/j.issn.1000–6060.2021.057 |
|
[Guo Yulin, Zhao Yong, Zhou Yaman, et al. Diurnal variation of summer precipitation and its relationship with altitude in Tianshan Mountains of Xinjiang[J]. Arid Land Geography, 2022, 45(1): 57-65.]
doi: 10.12118/j.issn.1000–6060.2021.057 |
|
| [22] | 刘文惠. 西北暖湿化背景下云量变化及其对蒸散发的影响[D]. 南京: 南京信息工程大学, 2024. |
| [Liu Wenhui. Changes in Cloudiness and Their Effects on Evapotranspiration in the Context of Warming and Humidification in Northwest China[D]. Nanjing: Nanjing University of Information Science & Technology, 2024.] | |
| [23] |
曹越前, 张武, 药静宇, 等. 半干旱区云量变化特征及其与太阳辐射关系的研究[J]. 干旱气象, 2015, 33(4): 684-693.
doi: 10.11755/j.issn.1006-7639(2015)-04-0684 |
| [Cao Yueqian, Zhang Wu, Yao Jingyu, et al. Variation of cloud fraction and its relationship with solar radiation over semi-arid region[J]. Journal of Arid Meteorology, 2015, 33(4): 684-693.] | |
| [24] |
Yongsiriwith P, Khoonphunnarai P, Intarachumnum R, et al. The effects of clouds on solar radiation at Songkhla[J]. Journal of Physics: Conference Series, 2018, 1144(1): 012034.
doi: 10.1088/1742-6596/1144/1/012034 |
| [25] | 张华, 王菲, 汪方, 等. 全球气候变化中的云辐射反馈作用研究进展[J]. 中国科学: 地球科学, 2022, 52(3): 400-417. |
|
[Zhang Hua, Wang Fei, Wang Fang, et al. Advances in cloud radiative feedbacks in global climate change[J]. Scientia Sinica Terrae, 2022, 52(3): 400-417.]
doi: 10.1360/SSTe-2021-0052 |
|
| [26] |
阿迪来·乌甫, 玉素甫江·如素力, 热伊莱·卡得尔, 等. 伊犁河谷蒸散量时空分布特征及变化趋势[J]. 地球信息科学学报, 2018, 20(2): 217-227.
doi: 10.12082/dqxxkx.2018.170102 |
| [Adilai Wufu, Yusufujiang Rusuli, Reyilai Kadeer, et al. Spatiotemporal distribution and variation trend of evapotranspiration in Ili River valley[J]. Journal of Geo-information Science, 2018, 20(2): 217-227.] | |
| [27] |
Hang S, Abbas A, Imin B, et al. Trends and spatiotemporal patterns of the meteorological drought in the Ili River Valley from 1961 to 2023: An SPEI-Based study[J]. Atmosphere, 2025, 16(1): 43-63.
doi: 10.3390/atmos16010043 |
| [28] | 于碧馨, 张云惠, 宋雅婷. 2012年前冬伊犁河谷持续性大暴雪成因分析[J]. 沙漠与绿洲气象, 2016, 10(5): 44-51. |
| [Yu Bixin, Zhang Yunhui, Song Yating. Cause analysis of continuous heavy blizzard over Yili in the previous winter of 2012[J]. Desert and Oasis Meteorology, 2016, 10(5): 44-51.] | |
| [29] | 庄晓翠, 赵江伟, 李博渊, 等. 伊犁河谷暴雪过程水汽特征[J]. 沙漠与绿洲气象, 2023, 17(2): 15-25. |
| [Zhuang Xiaocui, Zhao Jiangwei, Li Boyuan, et al. Characteristics of water vapor during blizzard in Ili River Valley[J]. Desert and Oasis Meteorology, 2023, 17(2): 15-25.] | |
| [30] |
张俊兰, 崔彩霞, 陈春艳. 北疆典型暴雪天气的水汽特征研究[J]. 高原气象, 2013, 32(4): 1115-1125.
doi: 10.7522/j.issn.1000-0534.2012.00105 |
|
[Zhang Junlan, Cui Caixia, Chen Chunyan. Study on water vapor characteristic of typical heavy snowstorm case in northern Xinjiang[J]. Plateau Meteorology, 2013, 32(4): 1115-1125.]
doi: 10.7522/j.issn.1000-0534.2012.00105 |
|
| [31] | Xu H, Guo J P, Tong B, et al. Characterizing the near-global cloud vertical structures over land using high-resolution radiosonde measurements[J]. Atmospheric Chemistry and Physics, 2023, 23(23):15011-15038. |
| [32] |
Spaulding-Astudillo F E, Mitchell J L. Effects of varying saturation vapor pressure on climate, clouds, and convection[J]. Journal of the Atmospheric Sciences, 2023, 80(5): 1247-1266.
doi: 10.1175/JAS-D-22-0063.1 |
| [33] | Ma J, Yao X, Yuan C. Characteristics and formation mechanism of the cloud vertical structure over the southeastern Tibetan Plateau in summer[J]. Earth and Space Science, 2023, 10(5): e002811. |
| [34] |
Yin J, Porporato A. Diurnal cloud cycle biases in climate models[J]. Nature Communications, 2017, 8(1): 2269-2276.
doi: 10.1038/s41467-017-02369-4 pmid: 29273812 |
| [35] | 徐文静, 吕达仁. 基于静止卫星探测的夏季青藏高原云分布及其日变化分析[J]. 气候与环境研究, 2023, 28(3): 229-241. |
| [Xu Wenjing, Lü Daren. Analysis of cloud distribution and its diurnal variation over the Tibetan Plateau in summer based on geostationary satellite data[J]. Climatic and Environmental Research, 2023, 28(3): 229-241.] | |
| [36] | 田磊, 桑建人, 姚展予, 等. 基于Ka波段云雷达的六盘山顶云特征分析[J]. 气象与环境学报, 2021, 37(2): 84-90. |
| [Tian Lei, Sang Jianren, Yao Zhanyu, et al. Preliminary analysis of cloud macro characteristics over the Liupan Mountain based on Ka-band cloud radar[J]. Journal of Meteorology and Environment, 2021, 37(2): 84-90.] | |
| [37] | 王改利, 周任然, 扎西索郎, 等. 青藏高原墨脱地区云降水综合观测及初步统计特征分析[J]. 气象学报, 2021, 79(5): 841-852. |
| [Wang Gaili, Zhou Renran, Zhaxisuolang, et al. Comprehensive observations and preliminary statistical analysis of clouds and precipitation characteristics in Motuo of Xizang Plateau[J]. Acta Meteorologica Sinica, 2021, 79(5): 841-852.] | |
| [38] |
李慧, 郑旭程, 苏立娟, 等. 基于毫米波云雷达的黄河流域内蒙古段云宏观特征分析[J]. 干旱气象, 2023, 41(3): 434-441.
doi: 10.11755/j.issn.1006-7639(2023)-03-0434 |
| [Li Hui, Zheng Xucheng, Su Lijuan, et al. Statistical analysis of cloud macrophysical characteristics in the Inner Mongolia section of the Yellow River Basin based on millimeter-wave cloud radar[J]. Journal of Arid Meteorology, 2023, 41(3): 434-441.] | |
| [39] | 连钰. 北天山复杂地形作用下的局地强降水过程数值模拟研究[D]. 南京: 南京信息工程大学, 2014. |
| [Lian Yu. A Numerical Simulation Study of a Topographic-Induced Heavy Rain Case at Northern Tianshan[D]. Nanjing: Nanjing University of Information Science & Technology, 2014.] | |
| [40] | 谢梦瑗, 赵德龙, 成鹏. 基于WRF模式模拟研究天山山脉地形对降水过程的影响[J]. 黑龙江科学, 2024, 15(6): 16-19,24. |
| [Xie Mengyuan, Zhao Delong, Cheng Peng. Effect of topography on precipitation process in Tianshan Mountains based on WRF model simulation[J]. Heilongjiang Science, 2024, 15(6): 16-19,24.] |
| [1] | 胡继然, 姚娟, 熊长江. 基于水供给服务供需关系的伊犁河谷生态管理分区[J]. 干旱区研究, 2025, 42(7): 1313-1322. |
| [2] | 李秀明, 贾文茹, 李生宇, 王翠, 王世杰. 横向垄状微地形近地表风速脉动特征[J]. 干旱区研究, 2025, 42(5): 933-943. |
| [3] | 张起鹏, 路红娥, 赵頔琛, 卓玛兰草. 甘南黄河上游植被覆盖度时空变化与地形因子的关系[J]. 干旱区研究, 2025, 42(3): 523-522. |
| [4] | 杨霞, 杨柳. 昆仑山北坡西段和中段暴雨的特征及差异[J]. 干旱区研究, 2025, 42(2): 202-211. |
| [5] | 付双喜, 亓鹏, 常祎, 把黎, 陈祺. 祁连山中部一次层状云降水云微物理特征的飞机观测研究[J]. 干旱区研究, 2025, 42(2): 212-222. |
| [6] | 杨柳, 杨霞, 刁鹏, 胡德喜, 王媛媛. ECMWF模式对昆仑山北坡夏季降水日变化特征的预报性能分析[J]. 干旱区研究, 2025, 42(1): 27-39. |
| [7] | 郝潘潘, 刘志有. 新疆绿洲土地利用隐性形态与土地生态安全协调特征——以伊犁河谷为例[J]. 干旱区研究, 2024, 41(9): 1605-1614. |
| [8] | 李超, 隆霄, 曹怡清, 韩子霏, 王号, 郑景元. 不同风场结构下贺兰山地形降水的理想数值试验[J]. 干旱区研究, 2024, 41(8): 1272-1287. |
| [9] | 杨锁华, 李丽, 马江德, 郭文霞. “三生空间”视角下陕西省1990—2020年土地利用转型及梯度效应[J]. 干旱区研究, 2024, 41(7): 1249-1258. |
| [10] | 程晓瑜, 吕洁华. 塔里木河流域碳储量的气候影响机制及地形分异下的归因[J]. 干旱区研究, 2024, 41(5): 865-875. |
| [11] | 许宁, 李治国, 梁雪悦, 周晓莹. 基于地形梯度的青藏高原冰川分布格局及成因[J]. 干旱区研究, 2024, 41(2): 230-239. |
| [12] | 杨秀梅, 孔祥伟, 沙宏娥, 张君霞. 两种中尺度模式对甘肃河东暴雨日降水预报偏差精细化评估[J]. 干旱区研究, 2024, 41(12): 1992-2003. |
| [13] | 李娜, 信会男, 赖宁, 李永福, 吕彩霞, 耿庆龙, 段婧婧, 陈署晃. 不同土地利用方式对农田土壤有机碳组分及土壤微生物量碳的影响[J]. 干旱区研究, 2024, 41(10): 1789-1796. |
| [14] | 周子涵, 王基鑫, 刘维成, 王勇, 张君霞, 郭润霞. 甘肃省暖季降水日变化特征[J]. 干旱区研究, 2024, 41(1): 1-12. |
| [15] | 范明彦, 田丽慧, 周海. 微地形对高寒固沙植物水分利用特征的影响[J]. 干旱区研究, 2024, 41(1): 60-70. |
|
||