干旱区研究 ›› 2025, Vol. 42 ›› Issue (3): 523-522.doi: 10.13866/j.azr.2025.03.12 cstr: 32277.14.AZR.20250312
收稿日期:
2024-07-14
修回日期:
2024-08-18
出版日期:
2025-03-15
发布日期:
2025-03-17
作者简介:
张起鹏(1980-),男,博士,副教授,主要从事景观生态学与3S技术应用. E-mail: qp0720aaa@163.com
基金资助:
ZHANG Qipeng(), LU Honge, ZHAO Dichen, Zhuomalancao
Received:
2024-07-14
Revised:
2024-08-18
Published:
2025-03-15
Online:
2025-03-17
摘要: 甘南黄河上游植被覆盖度在维持高寒生态系统结构稳定和涵养水源等方面发挥着重要的作用,探究植被覆盖度的时空变化及其与地形因子的关系,揭示其植被的时空分布规律,可以更好地理解高寒植被生态系统的动态和功能,为维护生态平衡及植被恢复提供理论支持。本文基于甘南黄河上游1990—2020年4期Landsat影像及数字高程模型(Digital Elevation Model,DEM)数据,采用像元二分模型、叠加分析、地理探测器等方法,对研究区域的植被覆盖度时空变化及其地形因子的相关性进行研究。结果表明:(1) 1990—2020年甘南黄河上游地区的植被覆盖度经历了从退化到恢复,再到显著提升的过程;研究区中高植被覆盖度(0.6~0.8)所占的比例最多,占总面积的77.68%。(2) 1990—2020年研究区植被覆盖度呈现出显著的改善趋势,其中,植被覆盖度改善的区域(Slope>0)约占总面积的91.26%,远大于退化区域(Slope<0)的面积。(3) 地形因子对植被覆盖度的解释力存在显著差异,海拔是植被覆盖度的主要驱动因子,坡度、坡向和海拔等地形因子交互作用的解释力高于单因子。(4) 研究区的植被覆盖度随海拔和坡度的增加都呈先上升后下降的单峰模式;南坡植被覆盖度最高,东北坡相对较低,在时间序列上北到西南方向植被覆盖度面积呈现萎缩状态,而西南、西及西北方向的面积在增大。研究结果可为甘南黄河上游生态保护及高质量发展提供科学支撑。
张起鹏, 路红娥, 赵頔琛, 卓玛兰草. 甘南黄河上游植被覆盖度时空变化与地形因子的关系[J]. 干旱区研究, 2025, 42(3): 523-522.
ZHANG Qipeng, LU Honge, ZHAO Dichen, Zhuomalancao . Relationship between temporal and spatial changes of vegetation coverage and topographic factors in the Upper Yellow River in Gannan[J]. Arid Zone Research, 2025, 42(3): 523-522.
[1] | 寇杰锋, 杨超, 张莹莹, 等. 黄河中下游伊洛河流域2002—2021年植被覆盖度时空变化及影响因素分析门[J]. 灌溉排水学报, 2024, 43(1): 89-96. |
[Kou Jiefeng, Yang Chao, Zhang Yingying, et al. Spatio-temporal variation of fractional vegetation cover and its influencing factors in the Yiluo River basin of the middle and lower reaches of the Yellow River from 2002 to 2021[J]. Journal of Irrigation and Drainage, 2024, 43(1): 89-96.] | |
[2] | Liu M, Wang S, Mi J, et al. Spatial variability of alpine meadow soils in Gannan Tibetan Autonomous Prefecture, Gansu Province, China[J]. Eurasian Soil Science, 2023, 56(Suppl. ): 276-286. |
[3] | Shi P, Li P, Li Z, et al. Effects of grass vegetation coverage and position on runoff and sediment yields on the slope of Loess Plateau, China[J]. Agricultural Water Management, 2022, 259(1): 107231. |
[4] | Shi X, Yang H, Chen Y, et al. Research on estimating potato fraction vegetation coverage (FVC) based on the vegetation index intersection method[J]. Agronomy, 2024, 14(8): 1620. |
[5] | Zhang M, Wang J, Li S. Tempo-spatial changes and main anthropogenic influence factors of vegetation fractional coverage in a large-scale opencast coal mine area from 1992 to 2015[J]. Journal of Cleaner Production, 2019, 232(27): 940-952. |
[6] | Gil-Leguizamón P A, Pereña-Ortiz J F, Sánchez-Mata D, et al. Spatial and temporal dynamics of the vegetation cover from the Bijagual Massif, Boyacá, Colombia, during the 1986-2021 period[J]. Plants, 2024, 13(7): 948. |
[7] | Zewdie W, Csaplovics E, Inostroza L. Monitoring ecosystem dynamics in northwestern Ethiopia using NDVI and climate variables to assess long term trends in dryland vegetation variability[J]. Applied Geography, 2017, 79(2): 167-178. |
[8] | Mzuri R T, Omar A A, Mustafa Y T. Spatiotemporal analysis of vegetation cover and its response to terrain and climate factors in Duhok Governorate, Kurdistan Region, Iraq[J]. The Iraqi Geological Journal, 2021, 54(1): 110-126. |
[9] | Namdari S, Zghair Alnasrawi A I, Ghorbanzadeh O, et al. Time series of remote sensing data for interaction analysis of the vegetation coverage and dust activity in the middle east[J]. Remote Sensing, 2022, 14(13): 2963. |
[10] | Mamattursun A, Yang H, Ablikim K, et al. Spatiotemporal evolution and driving forces of vegetation cover in the Urumqi River Basin[J]. International Journal of Environmental Research and Public Health, 2022, 19(22): 15323. |
[11] | Liu C, Zhang X, Wang T, et al. Detection of vegetation coverage changes in the Yellow River Basin from 2003 to 2020[J]. Ecological Indicators, 2022, 138(5): 108818. |
[12] | Ning L, Peng W, Yu Y, et al. Quantifying vegetation change and driving mechanism analysis in Sichuan from 2000 to 2020[J]. Frontiers in Environmental Science, 2023, 11(2): 1261295. |
[13] | 王文浩. 甘南玛曲“黄河之肾”面临的生态问题与防治对策[J]. 中国水土保持, 2009, 30(9): 33-35. |
[Wang Wenhao. Ecological problems faced by the “kidney of the Yellow River” in Gannan Maqu and its countermeasures[J]. Science of Soil and Water Conservation, 2009, 30(9): 33-35.] | |
[14] | Qiao F, Bai Y, Xie L, et al. Spatio-temporal characteristics of landscape ecological risks in the ecological functional zone of the Upper Yellow River, China[J]. International Journal of Environmental Research and Public Health, 2021, 18(24): 12943. |
[15] | Liu C, Li W, Zhu G, et al. Land use/land cover changes and their driving factors in the Northeastern Tibetan Plateau based on Geographical Detectors and Google Earth Engine: A case study in Gannan Prefecture[J]. Remote Sensing, 2020, 12(19): 3139. |
[16] | Yang Jilin, Dong Jinwei, Xiao Xiangming, et al. Divergent shifts in peak photosynthesis timing of temperate and alpine grasslands in China[J]. Remote Sensing of Environment, 2019, 233(14): 111395. |
[17] | 孙雷刚, 郑振华. 基于RS的近30年滹沱河流域植被覆盖度动态变化研究[J]. 地理与地理信息科学, 2014, 30(6): 36-40. |
[Sun Leigang, Zheng Zhenhua. RS-Based study on dynamic change of vegetation coverage in Hutuo River Watershed in the past 30 years[J]. Geography and Geo-Information Science, 2014, 30(6): 36-40.] | |
[18] | 祝聪, 彭文甫, 张丽芳, 等. 2006—2016年岷江上游植被覆盖度时空变化及驱动力[J]. 生态学报, 2019, 39(5): 1583-1594. |
[Zhu Chong, Peng Wenfu, Zhang Lifang, et al. Study of temporal and spatial variation and driving force of fractional vegetation cover in upper reaches of Minjiang River from 2006 to 2016[J]. Acta Ecologica Sinica, 2019, 39(5): 1583-1594.] | |
[19] | 彭博. 植被覆盖度时空变化特征与地形因子关系分析[J]. 水土保持应用技术, 2023, 43(4): 16-18. |
[Peng Bo. Analysis of the relationship between spatiotemporal variation characteristics of vegetation coverage and terrain factors[J]. Application Technology of Soil and Water Conservation, 2023, 43(4): 16-18.] | |
[20] | 白洪伟, 徐洋洋. 基于ENVI和ArcGIS的合肥市土地利用/覆被变化分析[J]. 沈阳大学学报(自然科学版), 2016, 28(5): 365-372. |
[Bai Hongwei, Xu Yangyang. Analysis of land use/cover change in Hefei City based on ENVI and ArcGIS[J]. Journal of Shenyang University (Natural Science), 2016, 28(5): 365-372.] | |
[21] |
裴志林, 曹晓娟, 王冬, 等. 内蒙古植被覆盖时空变化特征及其对人类活动的响应[J]. 干旱区研究, 2024, 41(4): 629-638.
doi: 10.13866/j.azr.2024.04.09 |
[Pei Zhilin, Cao Xiaojuan, Wang Dong, et al. Spatiotemporal variation in vegetation coverage in Inner Mongolia and its response to human activities[J]. Arid Zone Research, 2024, 41(4): 629-638.] | |
[22] |
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010 |
[Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.]
doi: 10.11821/dlxb201701010 |
|
[23] |
文妙霞, 何学高, 刘欢, 等. 基于地理探测器的宁夏草地植被覆被时空分异及驱动因子[J]. 干旱区研究, 2023, 40(8): 1322-1332.
doi: 10.13866/j.azr.2023.08.13 |
[Wen Miaoxia, He Xuegao, Liu Huan, et al. Analysis of the spatiotemporal variation characteristics and driving factors of grassland vegetation cover in Ningxia based on geographical detectors[J]. Arid Zone Research, 2023, 40(8): 1322-1332.]
doi: 10.13866/j.azr.2023.08.13 |
|
[24] | 银朵朵, 王艳慧. 温带大陆性半干旱季风气候区植被覆盖度时空变化及其地形分异研究[J]. 生态学报, 2021, 41(3): 1158-1167. |
[Yin Duoduo, Wang Yanhui. Temporal and spatial changes of vegetation coverage and its topographic differentiation in temperate continental semi-arid monsoon climate region[J]. Acta Ecologica Sinica, 2021, 41(3): 1158-1167.] | |
[25] | Wenjiao Li, Zhanju Lin, Xingwen Fan, et al. Experimental study on the influence of embankment slope direction on near-surface thermal conditions in permafrost region, Qinghai-Tibet Plateau[J]. Case Studies in Thermal Engineering, 2023, 49(11): 103311. |
[26] |
林妍敏, 李文慧, 南雄雄, 等. 基于地理探测器的宁夏贺兰山植被覆盖度时空分异及驱动因子[J]. 应用生态学报, 2022, 33(12): 3321-3327.
doi: 10.13287/j.1001-9332.202212.025 |
[Lin Yanmin, Li Wenhui, Nan Xiongxiong, et al. Spatial-temporal differentiation and driving factors of vegetation coverage in Ningxia Helan Mountain based on geodetector[J]. The Journal of Applied Ecology, 2022, 33(12): 3321-3327.] | |
[27] |
Guo J, Zhai L, Sang H, et al. Effects of hydrothermal factors and human activities on the vegetation coverage of the Qinghai-Tibet Plateau[J]. Scientific Reports, 2023, 13(1): 12488.
doi: 10.1038/s41598-023-39761-8 pmid: 37528182 |
[28] | Han H, Yin Y, Zhao Y, et al. Spatiotemporal variations in fractional vegetation cover and their responses to climatic changes on the Qinghai-Tibet Plateau[J]. Remote Sensing, 2023, 15(10): 2662. |
[29] | Li W, Liu C, Su W, et al. Spatiotemporal evaluation of alpine pastoral ecosystem health by using the Basic-Pressure-State-Response Framework: A case study of the Gannan region, Northwest China[J]. Ecological Indicators, 2021, 129(10): 108000. |
[30] | 杨灿, 魏天兴, 李亦然, 等. 黄土高原典型县域植被覆盖度时空变化及地形分异特征[J]. 生态学杂志, 2021, 40(6): 1830-1838. |
[Yang Can, Wei Tianxing, Li Yiran, et al. Spatiotemporal variations and topographic differentiation of fractional vegetation cover in typical counties of Loess Plateau[J]. Chinese Journal of Ecology, 2021, 40(6): 1830-1838.]
doi: DOI: 10.13292/j.1000-4890.202106.020 |
|
[31] | 陈浩. 黄土高原退耕还林前后流域土壤侵蚀时空变化及驱动因素研究[D]. 杨凌: 西北农林科技大学, 2019: 160. |
[Chen Hao. Spatial and Temporal Changes of Soil Erosion and Its Driving Factors Before and After the “Grain for Green” Project in the Loess Plateau[D]. Yangling: Northwest A & F University, 2019: 160.] | |
[32] | 张江蕾, 陈少辉. 祁连山自然保护区植被覆盖时空变化及地形分异研究[J]. 西部林业科学, 2023, 52(1): 106-112. |
[Zhang Jianglei, Chen Shaohui. Temporal and spatial variation of vegetation coverage and terrain differentiation in Qilian Mountains Nature Reserve[J]. Journal of West China Forestry Science, 2023, 52(1): 106-112.] | |
[33] |
付建新, 曹广超, 郭文焖. 1998—2017年祁连山南坡不同海拔、坡度和坡向生长季NDVI变化及其与气象因子的关系[J]. 应用生态学报, 2020, 31(4): 1203-1212.
doi: 10.13287/j.1001-9332.202004.018 |
[Fu Jianxin, Cao Guangchao, Guo Wenmen. Changes of growing season NDVI at different elevations, slopes, slope aspects and its relationship with meteorological factors in the southern slope of the Qilian Mountains, China from 1998 to 2017[J]. Chinese Journal of Applied Ecology, 2020, 31(4): 1203-1212.]
doi: 10.13287/j.1001-9332.202004.018 |
|
[34] | 袁杰, 曹广超, 杨登兴, 等. 祁连山黑河源区植被NDVI时空变化特征及影响因素分析[J]. 生态科学, 2021, 40(5): 172-182. |
[Yuan Jie, Cao Guangchao, Yang Dengxing, et al. Temporal and spatial variation characteristics and influencing factors of vegetation NDVl in Heihe source region of Qilian Mountains[J]. Ecological Science, 2021, 40(5): 172-182.] | |
[35] | 周雪妮, 肖成志, 刘磊, 等. 2000—2020年岷江上游干旱河谷区植被时空变化及其地形效应[J]. 现代地质, 2024, 38(3): 589-598. |
[Zhou Xueni, Xiao Chengzhi, Liu Lei, et al. Spatial and temporal changes of vegetation and its topographic effects in the arid valley area of the upper reaches of Minjiang River from 2000 to 2020[J]. Geoscience, 2024, 38(3): 589-598.] | |
[36] | 赵昕, 武胜利, 贺清智. 2000—2019年山西省植被覆盖度时空变化特征及地形因素分析[J]. 甘肃农业大学学报, 2024, 59(2): 240-249. |
[Zhao Xin, Wu Shengli, He Qingzhi. Spatial and temporal variation characteristics of vegetation coverage and analysis of topographic factors in Shanxi Province from 2000 to 2019[J]. Journal of Gansu Agricultural University, 2024, 59(2): 240-249.] | |
[37] | 邓元杰, 姚顺波, 侯孟阳, 等. 长江流域中上游植被NDVI时空变化及其地形分异效应[J]. 长江流域资源与环境, 2020, 29(1): 66-78. |
[Deng Yuanjie, Yao Shunbo, Hou Mengyang, et al. Temporal and spatial variation of vegetation NDVI and its topographic differentiation effect in the middle and upper reaches of the Yangtze River Basin[J]. Resources and Environment in the Yangtze Basin, 2020, 29(1): 66-78.] | |
[38] | 丁海勇, 丁昕玮. 基于SPOT_NDVI的甘肃省植被覆盖变化及其与气候、地形因子的关系[J]. 长江流域资源与环境, 2020, 29(12): 2665-2678. |
[Ding Haiyong, Ding Xinwei. Vegetation cover change and its responses to climate and topography in Gansu Province based on SPOT_NDVI[J]. Resources and Environment in the Yangtze Basin, 2020, 29(12): 2665-2678.] |
[1] | 沙贝宁, 杨余辉, 黄佛君, 叶茂. 中国西北地区逆温时空变化[J]. 干旱区研究, 2025, 42(3): 397-408. |
[2] | 张彬, 郑新军, 王玉刚, 唐立松, 李彦, 杜澜, 田胜川. 1990—2022年天山北坡地区不同开垦年限耕层土壤盐分变化[J]. 干旱区研究, 2024, 41(9): 1435-1445. |
[3] | 孙琳琳, 刘琼, 黄观, 陈勇航, 魏鑫, 郭玉琳, 张太西, 高天一, 许赟红. 新疆和周边“一带一路”地区不同云天条件下地表太阳辐射[J]. 干旱区研究, 2024, 41(9): 1480-1490. |
[4] | 戚曌, 闫峰, 席磊, 曹晓明, 邹佳秀, 冯益明. 鄂尔多斯高原砒砂岩区植被恢复潜力[J]. 干旱区研究, 2024, 41(9): 1583-1592. |
[5] | 袁征, 张志高, 闫瑾, 刘嘉毅, 胡柱钰, 王赟, 蔡茂堂. 1960—2020年黄河流域不同等级降水时空特征[J]. 干旱区研究, 2024, 41(8): 1259-1271. |
[6] | 张群慧, 常亮, 顾小凡, 王倩, 马卯楠, 李小等, 段瑞, 犹香智. 1979—2020年柴达木盆地人体舒适度指数时空变化及趋势分析[J]. 干旱区研究, 2024, 41(8): 1300-1308. |
[7] | 张宏伟, 别强, 石莹, 苏晓杰, 李欣璋. 黄河流域上游植被覆盖变化特征及其影响因素[J]. 干旱区研究, 2024, 41(8): 1385-1394. |
[8] | 郑柳娜, 江红南, 孙梦婷. 基于遥感影像的新疆渭干河—库车河三角洲土壤水盐与植被覆盖度的关系[J]. 干旱区研究, 2024, 41(7): 1131-1139. |
[9] | 侯嘉烨, 李建华, 王佳蓉, 马海涛, 强泽楷, 樊新刚. 基于SA-RSEI模型的盐池县生态质量演变研究[J]. 干旱区研究, 2024, 41(6): 1045-1058. |
[10] | 唐可欣, 郭建斌, 何亮, 陈林, 万龙. 中国旱区GPP时空演变特征及影响因素研究[J]. 干旱区研究, 2024, 41(6): 964-973. |
[11] | 李文秀, 燕振刚. 基于地理探测器的甘肃农牧交错带土地利用时空演化及其驱动机制[J]. 干旱区研究, 2024, 41(4): 590-602. |
[12] | 裴志林, 曹晓娟, 王冬, 李迪, 王鑫, 白艾原. 内蒙古植被覆盖时空变化特征及其对人类活动的响应[J]. 干旱区研究, 2024, 41(4): 629-638. |
[13] | 赵东颖, 蒙仲举, 孟芮冰, 马泽. 乌兰布和沙漠风沙入黄段植被覆盖动态变化特征及驱动力[J]. 干旱区研究, 2024, 41(4): 639-649. |
[14] | 刘如龙, 赵媛媛, 陈国清, 迟文峰, 刘正佳. 内蒙古黄河流域1990—2020年生境质量评估[J]. 干旱区研究, 2024, 41(4): 674-683. |
[15] | 周义, 索文姣. 基于CWSI的汾河流域干旱时空变化特征[J]. 干旱区研究, 2024, 41(2): 191-199. |
|