[1] |
Rodriguez-Caballero E, Belnap J, Budel B, et al. Dryland photoautotrophic soil surface communities endangered by global change[J]. Nature Geoscience, 2018, 11(3): 185-189.
|
[2] |
蒙文萍, 戴全厚, 冉景丞. 藓植物岩溶作用研究进展[J]. 植物生态学报, 2019, 43(5): 396-407.
doi: 10.17521/cjpe.2019.0020
|
|
[Meng Wenping, Dai Quanhou, Ran Jingcheng. A review on the process of bryophyte karstification[J]. Chinese Journal of Plant Ecology, 2019, 43(5): 396-407.]
doi: 10.17521/cjpe.2019.0020
|
[3] |
Bowker M A, Reed S C, Maestre F T, et al. Biocrusts: The living skin of the earth[J]. Plant and Soil, 2018, 429(1-2): 1-7.
|
[4] |
Gao L Q, Bowker M A, Sun H, et al. Linkages between biocrust development and water erosion and implications for erosion model implementation[J]. Geoderma, 2020, 357: 113973.
|
[5] |
Li S L, Bowker M A, Xiao B. Biocrusts enhance non-rainfall water deposition and alter its distribution in dryland soils[J]. Journal of Hydrology, 2021, 595: 126050.
|
[6] |
Zhou X B, Tao Y, Yin B F, et al. Nitrogen pools in soil covered by biological soil crusts of different successional stages in a temperate desert in Central Asia[J]. Geoderma, 2020, 366: 114166.
|
[7] |
Hu R, Wang X P, Xu J S, et al. The mechanism of soil nitrogen transformation under different biocrusts to warming and reduced precipitation: From microbial functional genes to enzyme activity[J]. Science of the Total Environment, 2020, 722: 137849.
|
[8] |
张雨虹, 张韶阳, 张树煇, 等. 毛乌素沙地藓类结皮对沙化土壤性质和细菌群落的影响[J]. 土壤学报, 2021, 58(6): 1585-1597.
|
|
[Zhang Yuhong, Zhang Shaoyang, Zhang Shuhui, et al. Effect of moss crust on sandy soil properties and bacterial community in Mu Us Sandy Land[J]. Acta Pedologica Sinica, 2021, 58(6): 1585-1597.]
|
[9] |
Lan S B, Zhang Q Y, Wu L, et al. Artificially accelerating the reversal of desertification: Cyanobacterial inoculation facilitates the succession of vegetation communities[J]. Environment Science & Technology, 2014, 48(1): 307-315.
|
[10] |
Bünemann E K, Bongiorno G, Bai Z G, et al. Soil quality-A critical review[J]. Soil Biology & Biochemistry, 2018, 120: 105-125.
|
[11] |
Glenk K, Mcvittie A, Moran D. Soil and Soil Organic Carbon Within An Ecosystem Service Approach Linking Biophysical and Economic Data[M]. Cupar: Scottish Agricultural College, 2012.
|
[12] |
张世航, 陶冶, 陈玉森, 等. 准噶尔荒漠土壤多功能性的空间变异特征及其驱动因素[J]. 生物多样性, 2022, 30(8): 140-150.
|
|
[Zhang Shihang, Tao Ye, Chen Yusen, et al. Spatial pattern of soil multifunctionality and its correlation with environmental and vegetation factors in the Junggar Desert, China[J]. Biodiversity Science, 2022, 30(8): 140-150.]
|
[13] |
Su Y G, Liu J, Zhang Y M, et al. More drought leads to a greater significance of biocrusts to soil multifunctionality[J]. Functional Ecology, 2021, 35(4): 989-1000.
|
[14] |
Zhang Q, Yin B F, Zhang S J, et al. Moss crusts mitigate the negative impacts of shrub mortality on the nutrient multifunctionality of desert soils[J]. Soil Science Society of America Journal, 2023, 88(1): 166-179.
|
[15] |
Zhou H, Gao Y, Jia X H, et al. Network analysis reveals the strengthening of microbial interaction in biological soil crust development in the Mu Us Sandy Land, northwestern China[J]. Soil Biology & Biochemistry, 2020, 144: 107782.
|
[16] |
Eldridge D J, Delgado-Baquerizo M, Quero J L, et al. Surface indicators are correlated with soil multifunctionality in global drylands[J]. Journal of Applied Ecology, 2020, 57(2): 424-435.
|
[17] |
Zhang S H, Chen Y S, Zhou X B, et al. Spatial patterns and drivers of ecosystem multifunctionality in China: Arid vs. humid regions[J]. Science of The Total Environment, 2024, 920: 170868.
|
[18] |
Hu W G, Ran J Z, Dong L W, et al. Aridity-driven shift in biodiversity-soil multifunctionality relationships[J]. Nature Communications, 2021, 12(1): 5350.
|
[19] |
Yan Y Z, Zhang Q, Buyantuev A, et al. Plant functional β diversity is an important mediator of effects of aridity on soil multifunctionality[J]. Science of the Total Environment, 2020, 726: 138529.
|
[20] |
Durán J, Delgado-Baquerizo M, Dougill A J, et al. Temperature and aridity regulate spatial variability of soil multifunctionality in drylands across the globe[J]. Ecology, 2018, 99(5): 1184-1193.
doi: 10.1002/ecy.2199
pmid: 29484631
|
[21] |
Kakeh J, Sanaei A, Sayer E J, et al. Biocrust diversity enhances dryland saline soil multifunctionality[J]. Land Degradation & Development, 2022, 34(2): 521-533.
|
[22] |
Zhang S H, Chen Y S, Lu Y X, et al. Spatial variability and driving factors of soil multifunctionality in drylands of China[J]. Regional Sustainability, 2022, 3: 223-232.
|
[23] |
陈亚宁, 杨青, 罗毅, 等. 西北干旱区水资源问题研究思考[J]. 干旱区地理, 2012, 35(1): 1-9.
|
|
[Chen Yaning, Yang Qing, Luo Yi, et al. Ponder on the issues of water resources in the arid region of Northwest China[J]. Arid Land Geography, 2012, 35(1): 1-9.]
|
[24] |
郭泽呈, 魏伟, 石培基, 等. 中国西北干旱区土地沙漠化敏感性时空格局[J]. 地理学报, 2020, 75(9): 1949-1965.
|
|
[Guo Zecheng, Wei Wei, Shi Peiji, et al. Spatiotemporal changes of land desertification sensitivity in the arid region of Northwest China[J]. Acta Geographica Sinica, 2020, 75(9): 1949-1965.]
|
[25] |
Sanderson M A, Skinner R H, Barker D J, et al. Plant species diversity and management of temperate forage and grazing land ecosystems[J]. Crop Science, 2004, 44(4): 1132-1144.
|
[26] |
Maestre F T, Quero J L, Gotelli N J, et al. Plant species richness and ecosystem multifunctionality in global drylands[J]. Science, 2012, 335(6065): 214-218.
doi: 10.1126/science.1215442
pmid: 22246775
|
[27] |
Soliveres S, Maestre F T, Eldridge D J, et al. Plant diversity and ecosystem multifunctionality peak at intermediate levels of woody cover in global drylands[J]. Global Ecology Biogeography, 2014, 23(12): 1408-1416.
|
[28] |
Valencia E, Maestre v, le Bagousse-Pinguet Y, et al. Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands[J]. New Phytolgist, 2015, 206(2): 660-671.
|
[29] |
陶冶, 刘耀斌, 吴甘霖, 等. 准噶尔荒漠区域尺度浅层土壤化学计量特征及其空间分布格局[J]. 草业学报, 2016, 25(7): 13-23.
doi: 10.11686/cyxb2016009
|
|
[Tao Ye, Liu Yaobin, Wu Ganlin, et al. Regional-scale ecological stoichiometric characteristics and spatial distribution patterns of key elements in surface soils in the Junggar Desert, China[J]. Acta Prataculturae Sinica, 2016, 25(7): 13-23.]
doi: 10.11686/cyxb2016009
|
[30] |
Ding J Y, Eldridge D J. Climate and plants regulate the spatial variation in soil multifunctionality across a climatic gradient[J]. Catena, 2021, 201: 105233.
|
[31] |
Rodell M, Houser P R, Jambor U, et al. The global land data assimilation system[J]. Bulletion of the American Meteorological Society, 2004, 85(3): 381-394.
|
[32] |
Housman D C, Powers H H, Collins A D, et al. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert[J]. Journal Arid Environment, 2006, 66(4): 620-634.
|
[33] |
Elbert W, Weber B, Burrows S, et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen[J]. Nature Geoscience, 2012, 5(7): 459-462.
|
[34] |
Zhao Y, Xu M, Belnap J. Potential nitrogen fixation activity of different aged biological soil crusts from rehabilitated grasslands of the hilly Loess Plateau, China[J]. Journal of Arid Environments, 2010, 74(10): 1186-1191
|
[35] |
高丽倩, 赵允格, 许明祥, 等. 生物土壤结皮演替对土壤生态化学计量特征的影响[J]. 生态学报, 2018, 38(2): 678-688.
|
|
[Gao Liqian, Zhao Yunge, Xu Mingxiang, et al. The effects of biological soil crust succession on soil ecological stoichiometry characteristics[J]. Acta Ecologica Sinica, 2018, 38(2): 678-688.]
|
[36] |
Zhang B C, Zhou X B, Zhang Y M. Responses of microbial activities and soil physical-chemical properties to the successional process of biological soil crusts in the Gurbantunggut Desert, Xinjiang[J]. Journal Arid Land, 2015, 7(1): 101-109.
|
[37] |
Ghiloufi W, Seo J, Kim J, et al. Effects of biological soil crusts on enzyme activities and microbial community in soils of an arid ecosystem[J]. Microbial Ecology, 2019, 77(1): 201-216.
doi: 10.1007/s00248-018-1219-8
pmid: 29922904
|
[38] |
Gao L Q, Bowker M A, Xu M X, et al. Biological soil crusts decrease erodibility by modifying inherent soil properties on the Loess Plateau, China[J]. Soil Biology & Biochemistry, 2017, 105: 49-58.
|
[39] |
李宁宁, 张光辉, 王浩, 等. 黄土丘陵沟壑区生物结皮对土壤抗蚀性能的影响[J]. 中国水土保持科学, 2020, 18(1): 42-48.
|
|
[Li Ningning, Zhang Guanghui, Wang Hao, et al. Soil anti-erodibility influenced by biological crusts in Loess Hilly and Gully Region[J]. Science of Soil and Water Conservation, 2020, 18(1): 42-48.]
|
[40] |
Liu L C, Li S Z, Duan Z H, et al. Effects of microbiotic crusts on dew deposition in the restored vegetation area at Shapotou, Northwest China[J]. Journal of Hydrology, 2006, 328(1-2): 331-337.
|
[41] |
Zhang J, Zhang Y M, Downing A, et al. The influence of biological soil crusts on dew deposition in Gurbantunggut Desert, Northwestern China[J]. Journal of Hydrology, 2009, 379(3-4): 220-228.
|
[42] |
Moyano F E, Manzoni S, Chenu C. Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models[J]. Soil Biology Biochemistry, 2013, 59: 72-85.
|
[43] |
Chen Y L, Xu Z W, Hu H W, et al. Responses of ammonia-oxidizing bacteria and archaea to nitrogen fertilization and precipitation increment in a typical temperate steppe in Inner Mongolia[J]. Applied Soil Ecology, 2013, 68: 36-45.
|
[44] |
Mcdaniel M D, Kaye J P, Kaye M W. Increased temperature and precipitation had limited effects on soil extracellular enzyme activities in a post-harvest forest[J]. Soil Biology & Biochemistry, 2013, 56: 90-98.
|
[45] |
Zhang W, Gao D X, Chen Z X, et al. Substrate quality and soil environmental conditions predict litter decomposition and drive soil nutrient dynamics following afforestation on the Loess Plateau of China[J]. Geoderma, 2018, 325: 152-161.
|
[46] |
Wang Y N, Li F Y, Song X, et al. Changes in litter decomposition rate of dominant plants in a semi-arid steppe across different land use types: Soil moisture, not home-field advantage, plays a dominant role[J]. Agriculture, Ecosystems & Environment, 2020, 303: 104989.
|
[47] |
Zhou X H, Zhou, L Y, Nie Y Y, et al. Similar responses of soil carbon storage to drought and irrigation in terrestrial ecosystems but with contrasting mechanisms: A meta-analysis[J]. Agriculture, Ecosystems & Environment, 2016, 228: 70-81.
|
[48] |
Ren C J, Zhao F Z, Shi Z, et al. Differential responses of soil microbial biomass and carbon-degrading enzyme activities to altered precipitation[J]. Soil Biology & Biochemistry, 2017, 115: 1-10.
|
[49] |
Delgado-Baquerizo M, Maestre F T, Gallardo A, et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands[J]. Nature, 2013, 502(7473): 672-676.
|