干旱区研究 ›› 2024, Vol. 41 ›› Issue (3): 387-398.doi: 10.13866/j.azr.2024.03.04 cstr: 32277.14.j.azr.2024.03.04
陶际峰1,2(), 包玉龙1,2(), 郭恩亮1,3, 金额尔德木吐1,2, 呼斯乐, 包玉海1,2
收稿日期:
2023-08-18
修回日期:
2023-12-01
出版日期:
2024-03-15
发布日期:
2024-04-01
通讯作者:
包玉龙. E-mail: baoyulong@imnu.edu.cn作者简介:
陶际峰(1997-),男,硕士研究生,主要从事干旱与气候变化研究. E-mail: taojifeng@mails.imnu.edu.cn
基金资助:
TAO Jifeng1,2(), BAO Yulong1,2(), GUO Enliang1,3, Jin Eerdemutu1,2, Husile , BAO Yuhai1,2
Received:
2023-08-18
Revised:
2023-12-01
Published:
2024-03-15
Online:
2024-04-01
摘要:
冬季干旱是制约内蒙古冬季畜牧业生产的主要干扰因子之一,定量表征其时空变化特征和发展规律对防灾减灾、保障农牧业健康发展具有重要意义。利用1980—2021年冬季(10月—翌年3月)ERA5-Land再分析气象数据,计算1个月和6个月时间尺度的标准化降水蒸散指数(Standardized Precipitation Evapotranspiration Index,SPEI),采用趋势分析、时空热点分析等方法,分析内蒙古全区和五种主要植被类型区冬季干旱演变特征。结果表明:(1) 近40 a内蒙古冬季整体SPEI呈现下降趋势,干旱化现象在不同植被和月份中表现不一,也有少数植被和月份趋于湿润化。(2) 内蒙古地区冬季干旱的时空热点变化模式主要表现为:振荡的热点、振荡的冷点和未检测到模式。具体从季节和月时间尺度来看,冬旱热点主要集中在内蒙古中部和西部的大部分地区,以及东部的兴安盟和通辽市,即这些区域冬旱现象呈现加剧的趋势。(3) 在干旱频率与频数统计方面,轻度冬旱事件发生频率最高,而荒漠草原和隔壁荒漠地区是发生冬旱事件最为频繁和严重的区域。
陶际峰, 包玉龙, 郭恩亮, 金额尔德木吐, 呼斯乐, 包玉海. 近40 a内蒙古冬旱时空演变特征[J]. 干旱区研究, 2024, 41(3): 387-398.
TAO Jifeng, BAO Yulong, GUO Enliang, Jin Eerdemutu, Husile , BAO Yuhai. Characteristics of the spatial and temporal evolution of winter drought in Inner Mongolia over the past 40 years[J]. Arid Zone Research, 2024, 41(3): 387-398.
表2
SPEI一元线性时间变化趋势及其相关系数(R2)和显著性检验(P)"
类型 | 时间尺度 | |||||||
---|---|---|---|---|---|---|---|---|
季 | 10月 | 11月 | 12月 | 1月 | 2月 | 3月 | ||
整体区域 | 变化趋势 | -0.0200 | -0.0052 | -0.0060 | -0.0125 | -0.0115 | -0.0101 | -0.0247 |
R2 | 0.2032** | 0.0012 | 0.0002 | 0.0682 | 0.0761 | 0.059 | 0.3122** | |
森林 | 变化趋势 | -0.0176 | -0.0061 | -0.0163 | -0.0115 | -0.0146 | 0.0061 | -0.0136 |
R2 | 0.0807 | 0.0099 | 0.0744 | 0.0319 | 0.0505 | 0.0107 | 0.0496 | |
草甸草原 | 变化趋势 | -0.0178 | -0.0070 | -0.0078 | -0.0116 | -0.0142 | -0.0034 | -0.0187 |
R2 | 0.1113* | 0.016 | 0.025 | 0.0443 | 0.0737 | 0.0045 | 0.1483* | |
典型草原 | 变化趋势 | -0.0182 | -0.0073 | 0.0013 | -0.0121 | -0.0139 | -0.0128 | -0.0262 |
R2 | 0.1122* | 0.0177 | 0.0005 | 0.053 | 0.0761 | 0.0641 | 0.2473** | |
荒漠草原 | 变化趋势 | -0.0245 | -0.0045 | 0.0057 | -0.0156 | -0.0098 | -0.0143 | -0.0315 |
R2 | 0.1628** | 0.0049 | 0.0078 | 0.0648 | 0.0247 | 0.0569 | 0.2389** | |
戈壁荒漠 | 变化趋势 | -0.0245 | 0.0012 | 0.0079 | -0.0125 | -0.0031 | -0.0190 | -0.0293 |
R2 | 0.1223* | 0.0003 | 0.0114 | 0.0334 | 0.0022 | 0.1074* | 0.1706** |
[1] | Liu J G, Chen H, Tian Z, et al. Interpretation of IPCC AR6: Climate change and water security[J]. Climate Change Research, 2022, 18(4): 405-413. |
[2] | Zhao D, Zhang Z, Zhang Y, et al. Soil moisture dominates the forest productivity decline during the 2022 China compound drought-heatwave event[J]. Geophysical Research Letters, 2023, 50(17): e2023GL104539. |
[3] |
Wang J S, Han L Y, Jia J Y, et al. The spatial distribution characteristics of a comprehensive drought risk index in southwestern China and underlying causes[J]. Theoretical and Applied Climatology, 2016, 124(3-4): 517-528.
doi: 10.1007/s00704-015-1432-z |
[4] | 包玉龙, 来全, 丽娜, 等. 基于MOD10A1的草原黑灾监测方法研究[J]. 灾害学, 2017, 32(2): 54-58. |
[Bao Yulong, Lai Quan, Li Na, et al. Research on the monitoring method of grassland black disaster based on MOD10A1[J]. Journal of Disasters, 2017, 32(2): 54-58.] | |
[5] |
Merabti A, Darouich H, Paredes P, et al. Assessing spatial variability and trends of droughts in eastern algeria using SPI, RDI, PDSI, and MedPDSI—A novel drought index using the FAO56 evapotranspiration method[J]. Water, 2023, 15(4): 626.
doi: 10.3390/w15040626 |
[6] |
Yang B, Kong L, Lai C G, et al. A framework on analyzing long-term drought changes and its influential factors based on the PDSI[J]. Atmosphere, 2022, 13(7): 1151.
doi: 10.3390/atmos13071151 |
[7] |
Ling M H, Han H B, Hu X Y, et al. Drought characteristics and causes during summer maize growth period on Huang-Huai-Hai Plain based on daily scale SPEI[J]. Agricultural Water Management, 2023, 280(30): 108198.
doi: 10.1016/j.agwat.2023.108198 |
[8] |
赵晓萌, 雷田旺, 范婧儿, 等. 基于气象干旱综合监测指数(MCI)的陕西省干旱灾害风险评估与区划[J]. 中国沙漠, 2022, 42(6): 125-133.
doi: 10.7522/j.issn.1000-694X.2022.00034 |
[Zhao Xiaomeng, Lei Tianwang, Fan Jinger, et al. Risk assessment and regionalization of drought disasters in different seasons in Shanxi, China based on MCI[J]. Journal of Desert Research, 2022, 42(6): 125-133.]
doi: 10.7522/j.issn.1000-694X.2022.00034 |
|
[9] | 单璐璐, 董海涛, 谭丽静, 等. K干旱指数在干旱监测中的应用[J]. 安徽农业科学, 2017, 45(25): 193-195, 198. |
[Shan Lulu, Dong Haitao, Tan Lijing, et al. Application of K drought monitoring[J]. Journal of Anhui Agricultural Sciences, 2017, 45(25): 193-195, 198.] | |
[10] | 陈正发, 李靖, 相彪, 等. 基于SPI的云南省多尺度干旱时空演变特征识别[J]. 灌溉排水学报, 2023, 42(4): 92-99. |
[Chen Zhengfa, Li Jing, Xiang Biao, et al. Identification of spatio-temporal evolution characteristics of multi-scale drought in Yunnan Province based on SPI[J]. Journal of Irrigation and Drainage, 2023, 42(4): 92-99.] | |
[11] |
段莹, 王文, 蔡晓军. PDSI、SPEI及CI指数在2010/2011年冬、春季江淮流域干旱过程的应用分析[J]. 高原气象, 2013, 32(4): 1126-1139.
doi: 10.7522/j.issn.1000-0534.2012.00106 |
[Duan Ying, Wang Wen, Cai Xiaojun. Application analysis of PDSI, SPEI, and CI indices in the drought process of the Yangtze-Huaihe River basin in winter/spring of 2010/2011[J]. Plateau Meteorology, 2013, 32(4): 1126-1139.] | |
[12] | 周小东, 常顺利, 王冠正, 等. 天山北坡中段雪岭云杉径向生长对气候变化的响应[J]. 干旱区研究, 2023, 40(8): 1215-1228. |
[Zhou Xiaodong, Chang Shunli, Wang Guanzheng, et al. Radial growth response of Picea schrenkiana to climate change in the middle section of the northern slope of the Tianshan Mountains[J]. Journal of Ecology, 2023, 40(8): 1215-1228.] | |
[13] |
王林, 陈文. 标准化降水蒸散指数在中国干旱监测的适用性分析[J]. 高原气象, 2014, 33(2): 423-431.
doi: 10.7522/j.issn.1000-0534.2013.00048 |
[Wang Lin, Chen Wen. Analysis of the applicability of the standardized precipitation evapotranspiration index for drought monitoring in China[J]. Plateau Meteorology, 2014, 33(2): 423-431.] | |
[14] |
郭海瑛, 王胜, 王娟, 等. 陇东半干旱地区冬季积温变化特征及其对冬小麦的影响[J]. 中国农学通报, 2018, 34(20): 101-105.
doi: 10.11924/j.issn.1000-6850.casb17090074 |
[Guo Haiying, Wang Sheng, Wang Juan, et al. Characteristics of winter temperature accumulation in semi-arid areas of eastern Gansu and its impact on winter wheat[J]. Chinese Agricultural Science Bulletin, 2018, 34(20): 101-105.] | |
[15] | 张棋, 许德合, 丁严. 基于SPEI和时空立方体的中国近40年干旱时空模式挖掘[J]. 干旱地区农业研究, 2021, 39(3): 194-201. |
[Zhang Qi, Xu Dehe, Ding Yan. Mining of spatio-temporal patterns of drought in China over the past 40 years based on SPEI and spatio-temporal cube[J]. Agricultural Research in the Arid Areas, 2021, 39(3): 194-201.] | |
[16] |
Wang Y F, Liu G X, Guo E L. Spatial distribution and temporal variation of drought in Inner Mongolia during 1901-2014 using Standardized Precipitation Evapotranspiration Index[J]. Science of Total Environment, 2019, 654(1): 850-862.
doi: 10.1016/j.scitotenv.2018.10.425 |
[17] | 马雪晴. 基于大气再分析数据的内蒙古半干旱草原植被物候预测研究[D]. 石家庄: 河北地质大学, 2022. |
[Ma Xueqing. Research on the Prediction of Vegetation Phenology in the Semi-Arid Grasslands of Inner Mongolia Based on Atmospheric Reanalysis Data[D]. Shijiazhuang: Hebei University of Geosciences, 2022.] | |
[18] |
Liu Y, Yang Y. Detecting a declining trend of multidepth soil moisture over the mongolian plateau from 1950 to 2020 Using ERA5-Land reanalysis datasets[J]. IEEE Access, 2022, 10: 95509-95526.
doi: 10.1109/ACCESS.2022.3204780 |
[19] |
Xie W, Yi S, Leng C, et al. The evaluation of IMERG and ERA5-Land daily precipitation over China with considering the influence of gauge data bias[J]. Scientific Reports, 2022, 12: 8085.
doi: 10.1038/s41598-022-12307-0 pmid: 35577849 |
[20] |
Guo E L, Wang Y F, Wang C L, et al. NDVI indicates long-term dynamics of vegetation and its driving forces from climatic and anthropogenic factors in Mongolian Plateau[J]. Remote Sensing, 2021, 13(4): 688.
doi: 10.3390/rs13040688 |
[21] | 乌日娜, 刘步云, 包玉海. 干旱对中国北方草原总初级生产力影响的时滞和累积效应[J]. 干旱区研究, 2023, 40(10): 1644-1660. |
[Wu Rina, Liu Buyun, Bao Yuhai. Time lag and cumulative effects of drought on the total primary productivity of grasslands in northern China[J]. Arid Zone Research, 2023, 40(10): 1644-1660.] | |
[22] |
Vicente-Serrano S M, McVicar T R, Miralles D G, et al. Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change[J]. WIREs Climate Change, 2020, 11(2): e632.
doi: 10.1002/wcc.v11.2 |
[23] |
金燕, 晏红明, 张茂松, 等. 云南冬半年极端低温事件与大气环流的关系[J]. 高原气象, 2022, 41(5): 1302-1314.
doi: 10.7522/j.issn.1000-0534.2021.00063 |
[Jin Yan, Yan Hongming, Zhang Maosong, et al. Relationship between extreme low temperature events and atmospheric circulation in Yunnan during winter half year[J]. Plateau Meteorology, 2022, 41(5): 1302-1314.]
doi: 10.7522/j.issn.1000-0534.2021.00063 |
|
[24] | 中华人民共和国国家标准: 气象干旱等级(GB/T 20481-2017)[S]. 北京: 中国标准出版社, 2017. |
[National Standard of the People’s Republic of China: Grades of Meteorological Drough t(GB/T 20481-2017)[S]. Beijing: Standards Press of China, 2017.] | |
[25] |
Kang Y, Guo E L, Wang Y F, et al. Characterisation of compound dry and hot events in Inner Mongolia and their relationship with large-scale circulation patterns[J]. Journal of Hydrology, 2022, 612: 128296.
doi: 10.1016/j.jhydrol.2022.128296 |
[26] | 昙娜, 阿拉腾图娅, 包玉龙, 等. 基于时空立方体的蒙古高原草原火高频区时空演变特征[J]. 草业科学, 2023, 40(11): 2763-2774. |
[Tan Na, A latengtuya, Bao Yulong, et al. Spatiotemporal evolution characteristics of high-frequency grassland fire area in Mongolian Plateau based on a space-time cube[J]. Pratacultural Science, 2023, 40(11): 2763-2774.] | |
[27] |
Zhang Y, Zhang Y J, Cheng L, et al. Have China’s drylands become wetting in the past 50 years?[J]. Journal of Geographical Sciences, 2023, 33(1): 99-124.
doi: 10.1007/s11442-022-2067-5 |
[28] |
Feng H H, Zhang M Y. Global land moisture trends: Drier in dry and wetter in wet over land[J]. Science Report, 2016, 5: 18018.
doi: 10.1038/srep18018 |
[29] | 杨舒畅, 杨恒山. 1982—2013年内蒙古地区干旱变化及植被响应[J]. 自然灾害学报, 2019, 28(1): 175-183. |
[Yang Shuchang, Yang Hengshan. Drought evolution and vegetation response in Inner Mongolia from 1982 to 2013[J]. Journal of Natural Disasters, 2019, 28(1): 175-183.] | |
[30] | 岳亚朋, 李建国, 潘霞, 等. 中国植被活动变化的主导因素[J]. 江苏师范大学学报(自然科学版), 2023, 41(1): 50-55. |
[Yue Yapeng, Li Jianguo, Pan Xia, et al. Identifying dominant factor driving vegetation activity in China[J]. Journal of Jiangsu Normal University (Natural Science Edition), 2023, 41(1): 50-55.] | |
[31] |
Yu D S, Li Y H, Yin B L, et al. Spatiotemporal variation of net primary productivity and its response to drought in Inner Mongolian desert steppe[J]. Global Ecology and Conservation, 2022, 33: e01991.
doi: 10.1016/j.gecco.2021.e01991 |
[32] |
Chang Y W, Zhang R Q, Hai C X, et al. Seasonal variation in soil temperature and moisture of a desert steppe environment: A case study from Xilamuren, Inner Mongolia[J]. Environmental Earth Science, 2021, 80: 290.
doi: 10.1007/s12665-021-09393-0 |
[33] |
Chen J, Zhang B, Zhou J, et al. Temporal and spatial changes of drought characteristics in temperate steppes in China from 1960 to 2020[J]. Sustainability, 2023, 15(17): 12909.
doi: 10.3390/su151712909 |
[34] |
An Q, He H X, Nie Q W, et al. Spatial and temporal variations of drought in Inner Mongolia, China[J]. Water, 2020, 12(6): 1715.
doi: 10.3390/w12061715 |
[35] | 谢岷, 高聚林, 孙继颖, 等. 基于SPEI指数的内蒙古多时空尺度干旱特征分析[J]. 灌溉排水学报, 2022, 41(6): 140-146. |
[Xie Min, Gao Julin, Sun Jiying, et al. Analysis of multi-temporal and spatial scale drought characteristics in Inner Mongolia based on SPEI index[J]. Journal of Irrigation and Drainage, 2022, 41(6): 140-146.] |
[1] | 张文睿, 孙栋元, 王亦可, 杨俊, 兰立军, 靳虎甲, 徐裕. 河西走廊水资源-生态环境-社会经济系统耦合关系及时空分异[J]. 干旱区研究, 2024, 41(9): 1527-1537. |
[2] | 李可璇, 张蕾, 李豪, 张恩月, 李育桢, 宋彩云, 刘庚. 基于MSPA模型和电路理论的晋西北国土空间生态修复关键区域识别[J]. 干旱区研究, 2024, 41(9): 1593-1604. |
[3] | 高鹏程, 岳艳妮, 鄢继选, 王世杰, 别强. 甘南藏族自治州土地利用与生态风险时空演变及驱动因素[J]. 干旱区研究, 2024, 41(7): 1140-1152. |
[4] | 菅政博, 罗浩, 单娜娜. “双碳”目标下新疆“三生”空间时空演变特征及碳效应[J]. 干旱区研究, 2024, 41(7): 1238-1248. |
[5] | 高雅玉, 宋玉, 赵廷红, 高金芳, 何文博, 李泽霞. 马莲河下游产水量时空演变特征[J]. 干旱区研究, 2024, 41(5): 776-787. |
[6] | 蔡玉琴, 祁栋林, 王烈福, 李海凤, 张德琴. 青海省不同等级寒冷日数时空演变特征[J]. 干旱区研究, 2024, 41(5): 742-752. |
[7] | 李文秀, 燕振刚. 基于地理探测器的甘肃农牧交错带土地利用时空演化及其驱动机制[J]. 干旱区研究, 2024, 41(4): 590-602. |
[8] | 邹易, 蒙吉军. 干旱区绿洲-城镇-荒漠景观演变及生态环境效应[J]. 干旱区研究, 2023, 40(6): 988-1001. |
[9] | 吴玥葶, 郭利丹, 井沛然, 黄峰, 王浩轩. 中亚五国水-能源-粮食-生态耦合关系及时空分异[J]. 干旱区研究, 2023, 40(4): 573-582. |
[10] | 王鹏, 秦思彤, 胡慧蓉. 近30 a拉萨河流域土地利用变化和生境质量的时空演变特征[J]. 干旱区研究, 2023, 40(3): 492-503. |
[11] | 黄莹, 王素艳, 马阳, 王岱, 张雯, 王璠. 宁夏近60 a寒潮变化特征及其环流异常[J]. 干旱区研究, 2023, 40(11): 1718-1728. |
[12] | 党慧, 荣丽华, 李伊彤, 赵名君. 农牧交错区三生空间时空演变特征与影响因素——以内蒙古呼和浩特市为例[J]. 干旱区研究, 2023, 40(10): 1698-1706. |
[13] | 张志高, 孙梓欣, 张秀丽, 郭可欣, 李卓娅, 郝海姣, 蔡茂堂. 1960—2020年黄河流域气候生长季时空演变及成因分析[J]. 干旱区研究, 2023, 40(10): 1537-1546. |
[14] | 侯青青,陈英,裴婷婷,吉珍霞,谢保鹏. 近25 a来甘肃省耕地资源时空变化及其影响因子[J]. 干旱区研究, 2022, 39(3): 955-967. |
[15] | 曾红霞,赵成章,王毓芳,李晓雅,赵婷婷,唐玉瑞. 盐池湾高寒湿地景观格局演变及其影响因素[J]. 干旱区研究, 2021, 38(6): 1771-1781. |
|