干旱区研究 ›› 2023, Vol. 40 ›› Issue (4): 573-582.doi: 10.13866/j.azr.2023.04.06
吴玥葶1,2(),郭利丹1,2,3(),井沛然4,黄峰2,3,5,王浩轩5
收稿日期:
2022-09-22
修回日期:
2023-01-17
出版日期:
2023-04-15
发布日期:
2023-04-28
通讯作者:
郭利丹. E-mail: 作者简介:
吴玥葶(1998-),女,硕士研究生,主要从事跨境河流管理、工程生态等研究. E-mail: 基金资助:
WU Yueting1,2(),GUO Lidan1,2,3(),JING Peiran4,HUANG Feng2,3,5,WANG Haoxuan5
Received:
2022-09-22
Revised:
2023-01-17
Online:
2023-04-15
Published:
2023-04-28
摘要:
针对中亚复杂的跨界水问题,从地区和国家层面基于系统耦合视角开展水-能源-粮食-生态(WEFE)系统协调性研究。首先构建了WEFE耦合协调评价指标体系,然后运用耦合协调度模型对中亚地区WEFE协调发展水平及其时空演变特征进行定量评价。结果表明:(1) 近20 a中亚地区WEFE系统耦合度保持较高水平,耦合协调度呈现缓慢增长趋势但处于勉强协调;(2) 各国耦合协调发展水平差异较大,哈萨克斯坦耦合协调水平最优但处于初级协调,塔吉克斯坦和吉尔吉斯斯坦为勉强协调,土库曼斯坦和乌兹别克斯坦为濒临失调;(3) 对比多系统的发展水平发现,塔吉克斯坦和吉尔吉斯斯坦粮食存在明显滞后,土库曼斯坦属于水资源滞后型,哈萨克斯坦和乌兹别克斯坦属于能源滞后型,子系统间未能达到良好匹配,一定程度上影响地区协调发展。研究成果可为中亚地区的WEFE协同发展及国家间跨界河流开发合作提供决策依据。
吴玥葶, 郭利丹, 井沛然, 黄峰, 王浩轩. 中亚五国水-能源-粮食-生态耦合关系及时空分异[J]. 干旱区研究, 2023, 40(4): 573-582.
WU Yueting, GUO Lidan, JING Peiran, HUANG Feng, WANG Haoxuan. Coupling relationship and spatiotemporal differentiation of the water-energy-food-ecology nexus in five Central Asian countries[J]. Arid Zone Research, 2023, 40(4): 573-582.
表1
中亚地区WEFE评价指标体系"
子系统层 | 指标层 | 单位 | 性质 | 权重 | |
---|---|---|---|---|---|
水资源 | 水资源供给情况 | 人均可再生内陆水资源量 | m3·人-1 | 正 | 0.245 |
产水模数 | m3·hm-2 | 正 | 0.346 | ||
水资源消费情况 | 人均用水量 | m3·人-1 | 负 | 0.068 | |
用水效益 | 万元GDP用水量 | m3·(104元)-1 | 负 | 0.019 | |
用水结构 | 农业用水比例 | % | 负 | 0.269 | |
工业用水比例 | % | 负 | 0.053 | ||
能源 | 能源供给情况 | 人均能源生产量 | TJ | 正 | 0.255 |
能源消费情况 | 人均能源消费量 | TJ | 负 | 0.069 | |
能源供给结构 | 煤炭产量比例 | % | 正 | 0.218 | |
能源消费结构 | 生活用电比例 | % | 正 | 0.127 | |
可再生能源消费比例 | % | 正 | 0.303 | ||
能源利用效益 | 万元GDP能耗 | TJ·(104元)-1 | 负 | 0.028 | |
粮食 | 粮食生产情况 | 人均粮食产量 | t·人-1 | 正 | 0.158 |
粮食单产 | kg·hm-2 | 正 | 0.093 | ||
粮食生产稳定性 | 粮食产量波动率 | % | 负 | 0.019 | |
粮食种植结构 | 粮食种植面积 | hm2 | 正 | 0.402 | |
人均耕地面积 | hm2·人-1 | 正 | 0.295 | ||
粮食需求 | 人口自然增长率 | % | 负 | 0.033 | |
生态 | 生态环境水平 | 森林覆盖率 | % | 正 | 0.381 |
保护区占陆地面积比例 | % | 正 | 0.190 | ||
环境污染情况 | 工业废水排放量 | t | 负 | 0.078 | |
能源二氧化碳排放量 | t | 负 | 0.126 | ||
对生态环境的压力 | 人口密度 | 人·km-2 | 负 | 0.225 |
表3
中亚五国WEFE综合评价指数、耦合度及耦合协调度均值"
国家 | 协调类型 | 制约因素 | |||||||
---|---|---|---|---|---|---|---|---|---|
塔吉克斯坦 | 0.664 | 0.397 | 0.069 | 0.429 | 0.389 | 0.759 | 0.544 | 勉强协调 | 粮食滞后 |
吉尔吉斯斯坦 | 0.493 | 0.358 | 0.117 | 0.622 | 0.398 | 0.843 | 0.579 | 勉强协调 | 粮食滞后 |
哈萨克斯坦 | 0.389 | 0.330 | 0.674 | 0.394 | 0.447 | 0.961 | 0.655 | 初级协调 | 能源滞后 |
土库曼斯坦 | 0.077 | 0.238 | 0.124 | 0.712 | 0.287 | 0.689 | 0.445 | 濒临失调 | 水资源滞后 |
乌兹别克斯坦 | 0.171 | 0.116 | 0.147 | 0.494 | 0.232 | 0.834 | 0.440 | 濒临失调 | 能源滞后 |
[1] | Hoff H. Understanding the Nexus. Background Paper for the Bonn 2011 Conference: The Water, Energy and Food Security Nexus[R]. Stockholm: Stockholm Environment Institute, 2011. |
[2] | 于宏源. 纽带安全: 能源-粮食-水安全威胁及其思考[J]. 区域与全球发展, 2018, 2(2): 94-110. |
[Yu Hongyuan. The energy-food-water security nexus security and its implications[J]. Area Studies and Global Development, 2018, 2(2): 94-110.] | |
[3] |
Zhang C, Chen X X, Li Y, et al. Water-energy-food nexus: Concepts, questions and methodologies[J]. Journal of Cleaner Production, 2018, 195: 625-639.
doi: 10.1016/j.jclepro.2018.05.194 |
[4] | 李良, 毕军, 周元春, 等. 基于粮食-能源-水关联关系的风险管控研究进展[J]. 中国人口·资源与环境, 2018, 28(7): 85-92. |
[Li Liang, Bi Jun, Zhou Yuanchun, et al. Research progress of regional environment risk management: From the perspectives of food-energy-water nexus[J]. China Population, Resources and Environment, 2018, 28(7): 85-92.] | |
[5] |
Simpson G B, Jewitt G P W. The development of the water-energy-food nexus as a framework for achieving resource security: A review[J]. Frontiers in Environmental Science, 2019, 7: 8.
doi: 10.3389/fenvs.2019.00008 |
[6] |
罗巍, 杨玄酯, 杨永芳, 等. 黄河流域水-能源-粮食纽带关系协同演化及预测[J]. 资源科学, 2022, 44(3): 608-619.
doi: 10.18402/resci.2022.03.14 |
[Luo Wei, Yang Xuanzhi, Yang Yongfang, et al. Co-evolution of water-energy-food-nexus in the Yellow River Basin and forecast of future development[J]. Resources Science, 2022, 44(3): 608-619.]
doi: 10.18402/resci.2022.03.14 |
|
[7] |
Owen A, Scott K, Barrett J. Identifying critical supply chains and final products: An input-output approach to exploring the energy-water-food nexus[J]. Applied Energy, 2018, 210: 632-642.
doi: 10.1016/j.apenergy.2017.09.069 |
[8] |
White D J, Hubacek K, Feng K, et al. The water-energy-food nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis[J]. Applied Energy, 2018, 210: 550-567.
doi: 10.1016/j.apenergy.2017.05.159 |
[9] | 孙才志, 周舟, 赵良仕. 基于SD模型的中国西南水-能源-粮食纽带系统仿真模拟[J]. 经济地理, 2021, 41(6): 20-29. |
[Sun Caizhi, Zhou Zhou, Zhao Liangshi. System simulation of water-energy-food in southwest China based on SD model[J]. Economic Geography, 2021, 41(6): 20-29.] | |
[10] |
Bakhshianlamouki E, Masia S, Karimi P, et al. A system dynamics model to quantify the impacts of restoration measures on the water-energy-food nexus in the Urmia lake Basin, Iran[J]. Science of the Total Environment, 2020, 708: 134874.
doi: 10.1016/j.scitotenv.2019.134874 |
[11] |
Xu S S, He W J, Shen J Q, et al. Coupling and coordination degrees of the core water-energy-food nexus in China[J]. International Journal of Environmental Research and Public Health, 2019, 16(9): 1648.
doi: 10.3390/ijerph16091648 |
[12] |
白景锋, 张海军. 中国水-能源-粮食压力时空变动及驱动力分析[J]. 地理科学, 2018, 38(10): 1653-1660.
doi: 10.13249/j.cnki.sgs.2018.10.009 |
[Bai Jingfeng, Zhang Haijun. Spatio-temporal variation and driving force of water-energy-food pressure in China[J]. Scientia Geographica Sinica, 2018, 38(10): 1653-1660.]
doi: 10.13249/j.cnki.sgs.2018.10.009 |
|
[13] |
徐辉, 王亿文, 张宗艳, 等. 黄河流域水-能源-粮食耦合机理及协调发展时空演变[J]. 资源科学, 2021, 43(12): 2526-2537.
doi: 10.18402/resci.2021.12.14 |
[Xu Hui, Wang Yiwen, Zhang Zongyan, et al. Coupling mechanism of water-energy-food and spatiotemporal evolution of coordinated development in the Yellow River Basin[J]. Resources Science, 2021, 43(12): 2526-2537.]
doi: 10.18402/resci.2021.12.14 |
|
[14] |
石天戈, 时卉. 中亚五国资源环境承载与经济发展耦合协调性分析[J]. 世界地理研究, 2019, 28(6): 32-41.
doi: 10.3969/j.issn.1004-9479.2019.06.2019225 |
[Shi Tiange, Shi Hui. Coupling relationship between resources, environment carrying capacity and economy in five Central Asia countries[J]. World Regional Studies, 2019, 28(6): 32-41.]
doi: 10.3969/j.issn.1004-9479.2019.06.2019225 |
|
[15] |
王奕佳, 刘焱序, 宋爽, 等. 水-粮食-能源-生态系统关联研究进展[J]. 地球科学进展, 2021, 36(7): 684-693.
doi: 10.11867/j.issn.1001-8166.2021.073 |
[Wang Yijia, Liu Yanxu, Song Shuang, et al. Research progress of the water-food-energy-ecosystem nexus[J]. Advances in Earth Science, 2021, 36(7): 684-693.]
doi: 10.11867/j.issn.1001-8166.2021.073 |
|
[16] |
Shi H Y, Luo G P, Zheng H W, et al. A novel causal structure-based framework for comparing a basin-wide water-energy-food-ecology nexus applied to the data-limited Amu Darya and Syr Darya river basins[J]. Hydrology and Earth System Sciences, 2021, 25(2): 901-925.
doi: 10.5194/hess-25-901-2021 |
[17] | 高洁, 赵勇, 姚俊强, 等. 气候变化背景下中亚干旱区大气水分循环要素时空演变[J]. 干旱区研究, 2022, 39(5): 1371-1384. |
[Gao Jie, Zhao Yong, Yao Junqiang, et al. Spatiotemporal evolution of atmospheric water cycle factors in arid regions of Central Asia under climate change[J]. Arid Zone Research, 2022, 39(5): 1371-1384.] | |
[18] |
Kuzmina Zh V, Treshkin S E. Climate changes in the Aral Sea region and Central Asia[J]. Arid Ecosystems, 2016, 6(4): 227-240.
doi: 10.1134/S2079096116040028 |
[19] |
Lee S O, Jung Y. Efficiency of water use and its implications for a water-food nexus in the Aral Sea Basin[J]. Agricultural Water Management, 2018, 207: 80-90.
doi: 10.1016/j.agwat.2018.05.014 |
[20] |
Ziganshina D R, de Schutter J L G. Paving the way for evidence-driven transboundary water cooperation in Central Asia[J]. Journal of the American Water Resources Association, 2022, 58(6): 1149-1161.
doi: 10.1111/jawr.v58.6 |
[21] | 姚俊强, 杨青, 毛炜峄, 等. 气候变化和人类活动对中亚地区水文环境的影响评估[J]. 冰川冻土, 2016, 38(1): 222-230. |
[Yao Junqiang, Yang Qing, Mao Weiyi, et al. Evaluation of the impacts of climate change and human activities on the hydrological environment in Central Asia[J]. Journal of Glaciology and Geocryology, 2016, 38(1): 222-230.] | |
[22] |
莫贵芬, 冯建中, 白林燕, 等. 2001—2018年中亚干旱区地表水资源时空变化特征[J]. 地理科学, 2022, 42(1): 174-184.
doi: 10.13249/j.cnki.sgs.2022.01.017 |
[Mo Guifen, Feng Jianzhong, Bai Linyan, et al. Spatio-temporal dynamic characteristics of surface water resources in arid regions of Central Asia from 2001 to 2018[J]. Scientia Geographica Sinica, 2022, 42(1): 174-184.]
doi: 10.13249/j.cnki.sgs.2022.01.017 |
|
[23] |
Li J X, Chen Y N, Xu C C, et al. Evaluation and analysis of ecological security in arid areas of Central Asia based on the emergy ecological footprint (EEF) model[J]. Journal of Cleaner Production, 2019, 235: 664-677.
doi: 10.1016/j.jclepro.2019.07.005 |
[24] | 郝林钢, 左其亭, 刘建华, 等. “一带一路”中亚区水资源利用与经济社会发展匹配度分析[J]. 水资源保护, 2018, 34(4): 42-48. |
[Hao Lingang, Zuo Qiting, Liu Jianhua, et al. Analysis of matching degree between water resources utilization and economic-social development in Central Asia are of “Belt and Road”[J]. Water Resources Protection, 2018, 34(4): 42-48.] | |
[25] | 何理, 王喻宣, 尹方平, 等. 全球气候变化影响下中亚水土资源与农业发展多元匹配特征研究[J]. 中国科学: 地球科学, 2020, 50(9): 1268-1279. |
[He Li, Wang Yuxuan, Yin Fangping, et al. The multivariate matching properties among water and soil resources and agricultural development in Central Asia under global climate change[J]. Scientia Sinica(Terrae), 2020, 50(9): 1268-1279.] | |
[26] | 彭宇, 李发东, 徐宁, 等. 1990—2019年中亚五国干旱状况时空变化特征及大气涛动驱动分析[J]. 中国生态农业学报, 2021, 29(2): 312-324. |
[Peng Yu, Li Fadong, Xu Ning, et al. Spatial-temporal variations in drought conditions and their climatic oscillations in Central Asia from 1990 to 2019[J]. Chinese Journal of Eco-Agriculture, 2021, 29(2): 312-324.] | |
[27] | 胡汝骥, 姜逢清, 王亚俊, 等. 中亚(五国)干旱生态地理环境特征[J]. 干旱区研究, 2014, 31(1): 1-12. |
[Hu Ruji, Jiang Fengqing, Wang Yajun, et al. Arid ecological and geographical conditions in five countries of Central Asia[J]. Arid Zone Research, 2014, 31(1): 1-12.] | |
[28] | 郭利丹, 吴玥葶, 黄峰, 等. 上下游型跨界流域水资源重复博弈及策略——以咸海流域为例[J]. 水利经济, 2022, 40(6): 16-23. |
[Guo Lidan, Wu Yueting, Huang Feng, et al. Study on repeated game and strategy of transboundary basin water resources for the up-down type of international rivers: taking the Aral Sea Basin as an example[J]. Journal of Economics of Water Resources, 2022, 40(6): 16-23.] | |
[29] | BP. Statistical Review of World Energy 2021[EB/OL]. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2021-full-report.pdf, 2022-07-10. |
[30] |
李稚, 李玉朋, 李鸿威, 等. 中亚地区干旱变化及其影响分析[J]. 地球科学进展, 2022, 37(1): 37-50.
doi: 10.11867/j.issn.1001-8166.2021.124 |
[Li Zhi, Li Yupeng, Li Hongwei, et al. Analysis of drought change and its impact in Central Asia[J]. Advances in Earth Science, 2022, 37(1): 37-50.]
doi: 10.11867/j.issn.1001-8166.2021.124 |
|
[31] | 邓鹏, 陈菁, 陈丹, 等. 区域水-能源-粮食耦合协调演化特征研究——以江苏省为例[J]. 水资源与水工程学报, 2017, 28(6): 232-238. |
[Deng Peng, Chen Jing, Chen Dan, et al. The evolutionary characteristics analysis of the coupling and coordination among water, energy and food: Take Jiangsu province as an example[J]. Journal of Water Resources and Water Engineering, 2017, 28(6): 232-238.] | |
[32] | 孙才志, 阎晓东. 中国水资源-能源-粮食耦合系统安全评价及空间关联分析[J]. 水资源保护, 2018, 34(5): 1-8. |
[Sun Caizhi, Yan Xiaodong. Security evaluation and spatial correlation pattern analysis of water resources-energy-food nexus coupling system in China[J]. Water Resources Protection, 2018, 34(5): 1-8.] | |
[33] | 李成宇, 张士强. 中国省际水-能源-粮食耦合协调度及影响因素研究[J]. 中国人口·资源与环境, 2020, 30(1): 120-128. |
[Li Chengyu, Zhang Shiqiang. Chinese provincial water-energy-food coupling coordination degree and influencing factors research[J]. China Population, Resources and Environment, 2020, 30(1): 120-128.] | |
[34] | International Energy Agency (IEA). Database documentation (Renewables information 2022 edition)[EB/OL]. http://wds.iea.org/wds/pdf/ren_documentation.pdf, 2022-12-20. |
[35] |
Cui D, Chen X, Xue Y L, et al. An integrated approach to investigate the relationship of coupling coordination between social economy and water environment on urban scale: A case study of Kunming[J]. Journal of Environmental Management, 2019, 234: 189-199.
doi: 10.1016/j.jenvman.2018.12.091 |
[36] | 周成, 冯学钢, 唐睿. 区域经济—生态环境—旅游产业耦合协调发展分析与预测——以长江经济带沿线各省市为例[J]. 经济地理, 2016, 36(3): 186-193. |
[Zhou Cheng, Feng Xuegang, Tang Rui. Ecological environment-tourism industry: A case study of provinces along the Yangtze economic zone[J]. Economic Geography, 2016, 36(3): 186-193.] | |
[37] | 李福夺, 杨兴洪. 新疆粮食生产波动: 波动特征与影响因素[J]. 干旱区资源与环境, 2016, 30(8): 54-61. |
[Li Fuduo, Yang Xinghong. The food production fluctuation in Xinjiang: Fluctuation characteristics, influence factors and policy recommendations[J]. Journal of Arid Land Resources and Environment, 2016, 30(8): 54-61.] | |
[38] | 廖重斌. 环境与经济协调发展的定量评判及其分类体系——以珠江三角洲城市群为例[J]. 热带地理, 1999, 19(2): 171-177. |
[Liao Chongbin. Quantitative judgement and classification system for coordinated development of environment and economy: A case study of the city group in the Pearl River Delta[J]. Tropical Geography, 1999, 19(2): 171-177.] | |
[39] | Overland I. Natural gas and Russia-Turkmenistan relations[J]. Russian Analytical Digest, 2009, 56(9): 9-13. |
[40] |
Huang J C, Na Y, Guo Y. Spatiotemporal characteristics and driving mechanism of the coupling coordination degree of urbanization and ecological environment in Kazakhstan[J]. Journal of Geographical Sciences, 2020, 30(11): 1802-1824.
doi: 10.1007/s11442-020-1813-9 |
[1] | 陈爱军,张寅,楚志刚. 基于FY-4A QPE的中亚五国降水时空分布特征[J]. 干旱区研究, 2023, 40(9): 1369-1381. |
[2] | 赵卓怡, 郝兴明. 基于Priestley-Taylor方法的中亚干旱区实际蒸散特征及归因[J]. 干旱区研究, 2023, 40(7): 1085-1093. |
[3] | 邹易, 蒙吉军. 干旱区绿洲-城镇-荒漠景观演变及生态环境效应[J]. 干旱区研究, 2023, 40(6): 988-1001. |
[4] | 王鹏, 秦思彤, 胡慧蓉. 近30 a拉萨河流域土地利用变化和生境质量的时空演变特征[J]. 干旱区研究, 2023, 40(3): 492-503. |
[5] | 赵豫芝,杨建军. 南疆地区水资源承载力及子系统耦合协调性时空格局[J]. 干旱区研究, 2023, 40(2): 213-223. |
[6] | 杨航,侯景伟,马彩虹,杨晨,王彦卷. 黄河上游生态脆弱区复合生态系统韧性时空分异——以宁夏为例[J]. 干旱区研究, 2023, 40(2): 303-312. |
[7] | 黄莹, 王素艳, 马阳, 王岱, 张雯, 王璠. 宁夏近60 a寒潮变化特征及其环流异常[J]. 干旱区研究, 2023, 40(11): 1718-1728. |
[8] | 张志高, 孙梓欣, 张秀丽, 郭可欣, 李卓娅, 郝海姣, 蔡茂堂. 1960—2020年黄河流域气候生长季时空演变及成因分析[J]. 干旱区研究, 2023, 40(10): 1537-1546. |
[9] | 党慧, 荣丽华, 李伊彤, 赵名君. 农牧交错区三生空间时空演变特征与影响因素——以内蒙古呼和浩特市为例[J]. 干旱区研究, 2023, 40(10): 1698-1706. |
[10] | 高洁,赵勇,姚俊强,迪丽努尔·托列吾别克,王梦园. 气候变化背景下中亚干旱区大气水分循环要素时空演变[J]. 干旱区研究, 2022, 39(5): 1371-1384. |
[11] | 刘海龙,唐飞,丁娅楠,张羽,郭晓佳,谭景柏,程岳. 山西省县域高质量发展与生态系统服务耦合的时空演变特征[J]. 干旱区研究, 2022, 39(4): 1234-1245. |
[12] | 张东良. 全新世西风模态下中亚干旱区孢粉类型多样性变化特征——以阿尔泰山为例[J]. 干旱区研究, 2022, 39(3): 667-675. |
[13] | 都伟冰,张世琼,李均力,包安明,王双亭,史宁可,许琳娟,高鑫,马丹丹,郑岩超. 中亚高山冰川表面高程变化时序重建[J]. 干旱区研究, 2022, 39(3): 676-683. |
[14] | 张赟鑫,郝海超,范连连,李耀明,张仁平,李凯辉. 中亚草地NPP时空动态及其驱动因素研究[J]. 干旱区研究, 2022, 39(3): 698-707. |
[15] | 侯青青,陈英,裴婷婷,吉珍霞,谢保鹏. 近25 a来甘肃省耕地资源时空变化及其影响因子[J]. 干旱区研究, 2022, 39(3): 955-967. |
|