干旱区研究 ›› 2023, Vol. 40 ›› Issue (6): 988-1001.doi: 10.13866/j.azr.2023.06.14 cstr: 32277.14.j.azr.2023.06.14
收稿日期:
2022-11-10
修回日期:
2023-05-11
出版日期:
2023-06-15
发布日期:
2023-06-21
作者简介:
邹易(1999-),女,硕士研究生,研究方向为土地转型及其效应. E-mail: 基金资助:
Received:
2022-11-10
Revised:
2023-05-11
Published:
2023-06-15
Online:
2023-06-21
摘要:
绿洲、城镇和荒漠是干旱区内陆河流域重要的景观类型,随着流域社会经济发展,干旱区生态环境问题日益凸显。本研究选取我国西北干旱区第二大内陆河——黑河流域内绿洲-城镇-荒漠的景观组合作为研究对象,利用景观转型核密度与景观结构指数分析2000—2020年期间黑河流域绿洲-城镇-荒漠的时空格局与转型特征,借助多元回归树(MRT)模型探究三类景观转型之间的权衡-协同关系,基于遥感生态指数(RSEI)与景观转型生态贡献率揭示绿洲-城镇-荒漠景观转型的生态环境效应。结果显示:(1) 黑河流域荒漠广布,绿洲仅在中下游河道沿岸集中分布,城镇面积占比最小,其空间分布和规模结构与绿洲有紧密关联;(2) 黑河流域绿洲-城镇-荒漠景观转型可概括为:农业活动主导期(2000—2005年)、产业快速发展期(2005—2015年)和发展转型协调期(2015—2020年);(3) 气温、GDP、海拔、降水量是影响绿洲-城镇-荒漠景观转型之间权衡-协同关系的主要因素;(4) 2000—2020年期间流域景观转型以正的生态环境效应为主,耕地扩张是正效应的主导因素;耕地退化、水域减少与草地退化则是带来负效应的主要因素。研究结果可为干旱区内陆河流域实施生态保护与高质量发展提供理论指导。
邹易, 蒙吉军. 干旱区绿洲-城镇-荒漠景观演变及生态环境效应[J]. 干旱区研究, 2023, 40(6): 988-1001.
ZOU Yi, MENG Jijun. Evaluation of an oasis-urban-desert landscape and the related eco-environmental effects in an arid area[J]. Arid Zone Research, 2023, 40(6): 988-1001.
表1
数据来源与说明"
数据名称 | 数据类型 | 时间序列 | 数据来源 |
---|---|---|---|
黑河流域行政区划数据 | 矢量 | - | 国家基础地理信息中心( |
黑河流域绿洲分布数据集 | 矢量 | 1963—2013年 | 国家冰川冻土沙漠科学数据中心( |
黑河流域绿洲重建面积统计数据集 | 矢量 | 1963—2013年 | 国家冰川冻土沙漠科学数据中心( |
土地利用数据 | 1 km×1 km栅格 | 2000—2020年每隔5 a | 中国科学院资源环境科学与数据中心( |
DEM数据 | 1 km×1 km栅格 | - | 中国科学院资源环境科学与数据中心( |
人口分布格网数据 | 1 km×1 km栅格 | 2000—2020年每隔5 a | WorldPop官网( |
GDP空间分布公里网格数据 | 1 km×1 km栅格 | 2000—2015年每隔5 a | 中国科学院资源环境科学与数据中心( |
高精度气温与降水数据 | 1 km×1 km栅格 | 2000—2015年每隔5 a | 中国科学院资源环境科学与数据中心( |
低精度气温与降水数据 | 0.1°×0.1°栅格 | 2000—2020年每隔5 a | 欧洲中期天气预报中心( |
MODIS遥感生态指数(RSEI)空间分布数据集 | 1 km×1 km栅格 | 2000—2019年 | 中国科学院地理科学与资源研究所 |
表2
黑河流域绿洲-城镇-荒漠景观土地利用分类系统"
一级类型 | 二级类型 | 说明 | |||
---|---|---|---|---|---|
编号 | 名称 | 编号 | 名称 | ||
1 | 绿洲 | 11 | 耕地 | 包括旱地和水田 | |
12 | 林地 | 包括有林地、灌木林、疏林地及其他林地 | |||
13 | 草地 | 指覆盖>20%的天然草地、改良草地和割草地 | |||
14 | 水域 | 包括河渠、湖泊、人工坑塘与河湖滩地 | |||
15 | 沼泽地 | 指有积水,表面生长湿生植物的湿地 | |||
2 | 荒漠 | 21 | 沙地 | 指表层为沙覆被、植被覆盖度5%以下的土地 | |
22 | 戈壁 | 指地表以碎砾石为主、植被覆盖度5%以下的土地 | |||
23 | 盐碱地 | 指地表盐碱聚集、生长耐盐碱植被的土地 | |||
24 | 低覆盖度草地 | 指植被覆盖度在5%~20%的天然草地 | |||
26 | 裸地 | 指地表土质、岩石或石砾覆盖,基本无植被覆盖的土地 | |||
27 | 其他未利用地 | 包括高寒荒漠、苔原等 | |||
3 | 城镇 | 31 | 城镇用地 | 指大、中、小城市及县镇以上建成区用地 | |
32 | 农村居民点 | 指独立于城镇以外的农村居民点用地 | |||
33 | 其他建设用地 | 指厂矿、油田、交通道路等用地 |
[1] |
Borgwardt F, Robinson L, Trauner D, et al. Exploring variability in environmental impact risk from human activities across aquatic ecosystems[J]. Science of the Total Environment, 2019, 652: 1396-1408.
doi: 10.1016/j.scitotenv.2018.10.339 |
[2] | 阮永健, 吴秀芹. 基于GRACE和GLDAS的西北干旱区地下水资源量可持续性评价[J]. 干旱区研究, 2022, 39(3): 787-800. |
[Ruan Yongjian, Wu Xiuqin. Evaluation of groundwater resource sustainability based on GRACE and GLDAS in arid region of Northwest China[J]. Arid Zone Research, 2022, 39(3): 787-800.] | |
[3] |
Liu B, Sun A, Zhao H, et al. Physicochemical properties of surface sediments in the Taklimakan desert, northwestern China, and their relationship with oasis-desert evolution[J]. Catena, 2022, 208: 105751.
doi: 10.1016/j.catena.2021.105751 |
[4] |
孙钦珂, 周亮, 唐相龙, 等. 干旱区绿洲城镇扩张对耕地空间影响及预测——以河西走廊区域为例[J]. 自然资源学报, 2021, 36(4): 1008-1020.
doi: 10.31497/zrzyxb.20210415 |
[Sun Qinke, Zhou Liang, Tang Xianglong, et al. Spatial influence and prediction of oasis urban expansion on cultivated land in arid areas: A case study of the Hexi Corridor[J]. Journal of Natural Resources, 2021, 36(4): 1008-1020.]
doi: 10.31497/zrzyxb.20210415 |
|
[5] | You N, Meng J, Zhu L, et al. Isolating the impacts of land use/cover change and climate change on the GPP in the Heihe River Basin of China[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(10): 005734. |
[6] |
蒙吉军, 王晓东, 尤南山, 等. 黑河中游生态用地景观连接性动态变化及距离阈值[J]. 应用生态学报, 2016, 27(6): 1715-1726.
doi: 10.13287/j.1001-9332.201606.015 |
[Meng Jijun, Wang Xiaodong, You Nanshan, et al. Dynamic changes of landscape connectivity for ecological lands and distance thresholds in the middle reaches of the Heihe River, Northwest China[J]. Chinese Journal of Applied Ecology, 2016, 27(6): 1715-1726.]
doi: 10.13287/j.1001-9332.201606.015 |
|
[7] |
Liu C, Zhang F, Johnson V C, et al. Spatio-temporal variation of oasis landscape pattern in arid area: Human or natural driving?[J]. Ecological Indicators, 2021, 125: 107495.
doi: 10.1016/j.ecolind.2021.107495 |
[8] |
Fleskens L, Duarte F, Eicher I. A conceptual framework for the assessment of multiple functions of agro-ecosystems: A case study of Trás-os-Montes olive groves[J]. Journal of Rural Studies, 2009, 25(1): 141-155.
doi: 10.1016/j.jrurstud.2008.08.003 |
[9] |
Zhang Z, Xu E, Zhang H. Complex network and redundancy analysis of spatial-temporal dynamic changes and driving forces behind changes in oases within the Tarim Basin in northwestern China[J]. Catena, 2021, 201: 105216.
doi: 10.1016/j.catena.2021.105216 |
[10] |
Yang G, Li F, Chen D, et al. Assessment of changes in oasis scale and water management in the arid Manas River Basin, north western China[J]. Science of the Total Environment, 2019, 691: 506-515.
doi: 10.1016/j.scitotenv.2019.07.143 |
[11] |
Ge G, Zhang J, Chen X, et al. Effects of land use and land cover change on ecosystem services in an arid desert-oasis ecotone along the Yellow River of China[J]. Ecological Engineering, 2022, 176: 106512.
doi: 10.1016/j.ecoleng.2021.106512 |
[12] |
常学礼, 李秀梅, 白雪莲, 等. 荒漠绿洲交错区景观稳定性与维持机制[J]. 中国沙漠, 2020, 40(3): 43-50.
doi: 10.7522/j.issn.1000-694X.2019.00049 |
[Chang Xueli, Li Xiumei, Bai Xuelian, et al. Landscape stability and maintaining mechanism in desert-oasis ecotone[J]. Journal of Desert Research, 2020, 40(3): 43-50.]
doi: 10.7522/j.issn.1000-694X.2019.00049 |
|
[13] | 钱大文, 巩杰, 贾珍珍. 绿洲化-荒漠化土地时空格局变化对比研究——以黑河中游临泽县为例[J]. 干旱区研究, 2016, 33(1): 80-88. |
[Qian Dawen, Gong Jie, Jia Zhenzhen. Analysis on the spatio-temporal evolution of oasis formation and desertification: A case study of Linze County in the middle reaches of Heihe River, Gansu[J]. Arid Zone Research, 2016, 33(1): 80-88.] | |
[14] |
Meng J, Cheng H, Li F, et al. Spatial-temporal trade-offs of land multi-functionality and function zoning at finer township scale in the middle reaches of the Heihe River[J]. Land Use Policy, 2022, 115: 106019.
doi: 10.1016/j.landusepol.2022.106019 |
[15] |
Felipe-Lucia M R, Soliveres S, Penone C, et al. Multiple forest attributes underpin the supply of multiple ecosystem services[J]. Nature communications, 2018, 9(1): 1-11.
doi: 10.1038/s41467-017-02088-w |
[16] |
Li S, Zhao Y, Xiao W, et al. Identifying ecosystem service bundles and the spatiotemporal characteristics of trade-offs and synergies in coal mining areas with a high groundwater table[J]. Science of the Total Environment, 2022, 807: 151036.
doi: 10.1016/j.scitotenv.2021.151036 |
[17] |
Hao R, Yu D, Wu J. Relationship between paired ecosystem services in the grassland and agro-pastoral transitional zone of China using the constraint line method[J]. Agriculture, Ecosystems & Environment, 2017, 240: 171-181.
doi: 10.1016/j.agee.2017.02.015 |
[18] | De'ath G A G. Multivariate regression trees: A new technique for constrained classification analysis[J]. Ecology, 2002, 83: 1105-1117. |
[19] |
赖江山, 米湘成, 任海保, 等. 基于多元回归树的常绿阔叶林群丛数量分类——以古田山24公顷森林样地为例[J]. 植物生态学报, 2010, 34(7): 761-769.
doi: 10.3773/j.issn.1005-264x.2010.07.001 |
[Lai Jiangshan, Mi Xiangcheng, Ren Haibao, et al. Numerical classification of associations in subtropical evergreen broad-leaved forest based on multivariate regression trees: A case study of 24 hm2 Gutianshan forest plot in China[J]. Chinese Journal of Plant Ecology, 2010, 34(7): 761-769.]
doi: 10.3773/j.issn.1005-264x.2010.07.001 |
|
[20] |
Ndong G O, Villerd J, Cousin I, et al. Using a multivariate regression tree to analyze trade-offs between ecosystem services: Application to the main cropping area in France[J]. Science of The Total Environment, 2021, 764: 142815.
doi: 10.1016/j.scitotenv.2020.142815 |
[21] |
Lyu R, Zhao W, Tian X, et al. Non-linearity impacts of landscape pattern on ecosystem services and their trade-offs: A case study in the City Belt along the Yellow River in Ningxia, China[J]. Ecological Indicators, 2022, 136: 108608.
doi: 10.1016/j.ecolind.2022.108608 |
[22] | 董敬儒, 颉耀文, 段含明, 等. 黑河流域绿洲变化的模式与稳定性分析[J]. 干旱区研究, 2020, 37(4): 1048-1056. |
[Dong Jingru, Xie Yaowen, Duan Hanming, et al. Analysis of patterns in the variation and stability of oases in the Heihe River basin[J]. Arid Zone Research, 2020, 37(4): 1048-1056.] | |
[23] | 唐霞, 李森. 历史时期河西走廊绿洲演变研究的进展[J]. 干旱区资源与环境, 2021, 35(7): 48-55. |
[Tang Xia, Li Sen. An analysis on the oasis evolution of Hexi Corridor in historical period[J]. Journal of Arid Land Resources and Environment, 2021, 35(7): 48-55.] | |
[24] |
Xiao F, Gao G, Shen Q, et al. Spatio-temporal characteristics and driving forces of landscape structure changes in the middle reach of the Heihe River Basin from 1990 to 2015[J]. Landscape Ecology, 2019, 34(4): 755-770.
doi: 10.1007/s10980-019-00801-2 |
[25] | 马鑫苗, 徐华君, 古丽娜尔·麦麦提. 土地利用功能转型及其生态环境效应研究——以吐鲁番市高昌区为例[J]. 干旱区地理, 2022, 45(2): 445-455. |
[Ma Xinmiao, Xu Huajun, Gulinar Maimaiti. Transformation of land use function and its ecological environmental effects: A case study in the Gaochang District of Turpan City[J]. Arid Land Geography, 2022, 45(2): 445-455.] | |
[26] |
Hou G, Chen L. Regional commercial center identification based on POI big data in China[J]. Arabian Journal of Geosciences, 2021, 14(14): 1-14.
doi: 10.1007/s12517-020-06304-8 |
[27] |
Xu L, Zhao S, Chen S S, et al. Analysis of arable land distribution around human settlements in the riparian area of Lake Tanganyika in Africa[J]. Applied Geography, 2020, 125: 102344.
doi: 10.1016/j.apgeog.2020.102344 |
[28] |
Chen W, Zeng J, Li N. Change in land-use structure due to urbanisation in China[J]. Journal of Cleaner Production, 2021, 321: 128986.
doi: 10.1016/j.jclepro.2021.128986 |
[29] |
Fu Y, Zhou T, Yao Y, et al. Evaluating efficiency and order of urban land use structure: An empirical study of cities in Jiangsu, China[J]. Journal of Cleaner Production, 2021, 283: 124638.
doi: 10.1016/j.jclepro.2020.124638 |
[30] | 杨超, 张少伟, 陈万旭, 等. 广东省土地利用结构信息熵时空演变特征分析[J]. 水土保持研究, 2021, 28(6): 251-259. |
[Yang Chao, Zhang Shaowei, Chen Wanxu, et al. Spatiotemporal evolution of information entropy of land use structure in Guangdong Province[J]. Research of Soil Water Conservation, 2021, 28(6): 251-259.] | |
[31] |
吕荣芳, 赵文鹏, 田晓磊, 等. 祁连山地区生态系统服务间权衡的社会-生态环境响应机制研究[J]. 冰川冻土, 2021, 43(3): 928-938.
doi: 10.7522/j.issn.1000-0240.2021.0060 |
[Lyu Rongfang, Zhao Wenpeng, Tian Xiaolei, et al. The trade-offs among ecosystem services and their response to socio-ecological environment in Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2021, 43(3): 928-938.]
doi: 10.7522/j.issn.1000-0240.2021.0060 |
|
[32] |
Chen A, Yang X, Guo J, et al. Dynamic of land use, landscape, and their impact on ecological quality in the northern sand-prevention belt of China[J]. Journal of Environmental Management, 2022, 317: 115351.
doi: 10.1016/j.jenvman.2022.115351 |
[33] |
An M, Xie P, He W, et al. Spatiotemporal change of ecologic environment quality and human interaction factors in three gorges ecologic economic corridor, based on RSEI[J]. Ecological Indicators, 2022, 141: 109090.
doi: 10.1016/j.ecolind.2022.109090 |
[34] | 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013, 33(24): 7853-7862. |
[Xu Hanqiu. A remote sensing urban ecological index and its application[J]. Acta Ecologica Sinica, 2013, 33(24): 7853-7862.] | |
[35] |
Zheng Z, Wu Z, Chen Y, et al. Instability of remote sensing based ecological index (RSEI) and its improvement for time series analysis[J]. Science of The Total Environment, 2022, 814: 152595.
doi: 10.1016/j.scitotenv.2021.152595 |
[36] |
孔冬艳, 陈会广, 吴孔森. 中国“三生空间”演变特征、生态环境效应及其影响因素[J]. 自然资源学报, 2021, 36(5): 1116-1135.
doi: 10.31497/zrzyxb.20210503 |
[Kong Dongyan, Chen Huiguang, Wu Kongsen. The evolution of “Production-Living-Ecological” space, eco-environmental effects and its influencing factors in China[J]. Journal of Natural Resources, 2021, 36(5): 1116-1135.]
doi: 10.31497/zrzyxb.20210503 |
|
[37] |
Zhang J, Li S, Lin N, et al. Spatial identification and trade-off analysis of land use functions improve spatial zoning management in rapid urbanized areas, China[J]. Land Use Policy, 2022, 116: 106058.
doi: 10.1016/j.landusepol.2022.106058 |
[38] | Chen H, Chen C, Zhang Z, et al. Changes of the spatial and temporal characteristics of land-use landscape patterns using multi-temporal Landsat satellite data: A case study of Zhoushan Island, China[J]. Ocean & Coastal Management, 2021, 213: 105842. |
[39] |
Wu Y, Luo J, Zhang X, et al. Urban growth dilemmas and solutions in China: Looking forward to 2030[J]. Habitat International, 2016, 56: 42-51.
doi: 10.1016/j.habitatint.2016.04.004 |
[40] |
Pan N, Guan Q, Wang Q, et al. Spatial differentiation and driving mechanisms in ecosystem service value of Arid Region: A case study in the middle and lower reaches of Shule River Basin, NW China[J]. Journal of Cleaner Production, 2021, 319: 128718.
doi: 10.1016/j.jclepro.2021.128718 |
[41] | Song W, Zhang Y. Expansion of agricultural oasis in the Heihe River Basin of China: Patterns, reasons and policy implications[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2015, 89: 46-55. |
[42] |
Shao Y, Jiang Q, Wang C, et al. Analysis of critical land degradation and development processes and their driving mechanism in the Heihe River Basin[J]. Science of the Total Environment, 2020, 716: 137082.
doi: 10.1016/j.scitotenv.2020.137082 |
[43] |
Qiu M, Yang Z, Zuo Q, et al. Evaluation on the relevance of regional urbanization and ecological security in the nine provinces along the Yellow River, China[J]. Ecological Indicators, 2021, 132: 108346.
doi: 10.1016/j.ecolind.2021.108346 |
[44] |
Bahtebay J, Zhang F, Ariken M, et al. Evaluation of the coordinated development of urbanization-resources-environment from the incremental perspective of Xinjiang, China[J]. Journal of Cleaner Production, 2021, 325: 129309.
doi: 10.1016/j.jclepro.2021.129309 |
[1] | 张文睿, 孙栋元, 王亦可, 杨俊, 兰立军, 靳虎甲, 徐裕. 河西走廊水资源-生态环境-社会经济系统耦合关系及时空分异[J]. 干旱区研究, 2024, 41(9): 1527-1537. |
[2] | 李可璇, 张蕾, 李豪, 张恩月, 李育桢, 宋彩云, 刘庚. 基于MSPA模型和电路理论的晋西北国土空间生态修复关键区域识别[J]. 干旱区研究, 2024, 41(9): 1593-1604. |
[3] | 高鹏程, 岳艳妮, 鄢继选, 王世杰, 别强. 甘南藏族自治州土地利用与生态风险时空演变及驱动因素[J]. 干旱区研究, 2024, 41(7): 1140-1152. |
[4] | 菅政博, 罗浩, 单娜娜. “双碳”目标下新疆“三生”空间时空演变特征及碳效应[J]. 干旱区研究, 2024, 41(7): 1238-1248. |
[5] | 蔡玉琴, 祁栋林, 王烈福, 李海凤, 张德琴. 青海省不同等级寒冷日数时空演变特征[J]. 干旱区研究, 2024, 41(5): 742-752. |
[6] | 高雅玉, 宋玉, 赵廷红, 高金芳, 何文博, 李泽霞. 马莲河下游产水量时空演变特征[J]. 干旱区研究, 2024, 41(5): 776-787. |
[7] | 李文秀, 燕振刚. 基于地理探测器的甘肃农牧交错带土地利用时空演化及其驱动机制[J]. 干旱区研究, 2024, 41(4): 590-602. |
[8] | 陶际峰, 包玉龙, 郭恩亮, 金额尔德木吐, 呼斯乐, 包玉海. 近40 a内蒙古冬旱时空演变特征[J]. 干旱区研究, 2024, 41(3): 387-398. |
[9] | 吴玥葶, 郭利丹, 井沛然, 黄峰, 王浩轩. 中亚五国水-能源-粮食-生态耦合关系及时空分异[J]. 干旱区研究, 2023, 40(4): 573-582. |
[10] | 王鹏, 秦思彤, 胡慧蓉. 近30 a拉萨河流域土地利用变化和生境质量的时空演变特征[J]. 干旱区研究, 2023, 40(3): 492-503. |
[11] | 黄莹, 王素艳, 马阳, 王岱, 张雯, 王璠. 宁夏近60 a寒潮变化特征及其环流异常[J]. 干旱区研究, 2023, 40(11): 1718-1728. |
[12] | 张志高, 孙梓欣, 张秀丽, 郭可欣, 李卓娅, 郝海姣, 蔡茂堂. 1960—2020年黄河流域气候生长季时空演变及成因分析[J]. 干旱区研究, 2023, 40(10): 1537-1546. |
[13] | 党慧, 荣丽华, 李伊彤, 赵名君. 农牧交错区三生空间时空演变特征与影响因素——以内蒙古呼和浩特市为例[J]. 干旱区研究, 2023, 40(10): 1698-1706. |
[14] | 蒋小芳,段翰晨,廖杰,宋翔,薛娴. 基于PLUS-SD耦合模型的黑河流域中游甘临高地区土地利用研究[J]. 干旱区研究, 2022, 39(4): 1246-1258. |
[15] | 张云霞,张金茜,巩杰. 半干旱区湖盆景观格局脆弱性及其影响因素——以凉城县为例[J]. 干旱区研究, 2022, 39(4): 1259-1269. |
|