干旱区研究 ›› 2023, Vol. 40 ›› Issue (6): 916-925.doi: 10.13866/j.azr.2023.06.07 cstr: 32277.14.j.azr.2023.06.07
关宇淇1(),李广1,潘雪2,徐国荣1,魏星星3,刘昊1,吴江琪1()
收稿日期:
2022-11-25
修回日期:
2023-03-03
出版日期:
2023-06-15
发布日期:
2023-06-21
作者简介:
关宇淇(1999-),女,硕士研究生,主要从事水土保持与荒漠化防治研究. E-mail: 基金资助:
GUAN Yuqi1(),LI Guang1,PAN Xue2,XU Guorong1,WEI Xingxing3,LIU Hao1,WU Jiangqi1()
Received:
2022-11-25
Revised:
2023-03-03
Published:
2023-06-15
Online:
2023-06-21
摘要:
降雨是湿地水资源补给量和土壤呼吸的重要扰动因子,全球气候变化导致的未来极端降雨变率增大对湿地生态系统有着重要影响。为探究极端降雨频率下青藏高原湿草甸土壤有机碳(SOC)、全氮(TN)、全磷(TP)含量及化学计量比的变化特征,本文以青藏高原东北边缘碌曲县尕海-则岔自然保护区境内的湿草甸土壤为研究对象,设置空白对照(CK:0 mm)、每周浇灌一次(DF1:25 mm×19次)、每两周浇灌一次(DF2:25 mm×9次)、每三周浇灌一次(DF3:25 mm×6次)和每四周浇灌一次(DF4:25 mm×4次)5种处理,分析极端降雨频率下0~40 cm土层土壤SOC、TN和TP化学计量特征的变化规律。结果表明:在不同降雨频率下,土壤SOC含量随降雨频率增加而增加,TN和TP含量则与之相反。在土壤垂直剖面上,SOC和TN含量均随土层深度增加而降低,TP含量随土层深度增加无显著变化;C:P和N:P均随土层加深有所降低,而C:N随土层加深无显著变化;C:N、C:P和N:P在不同降雨频率间差异不显著;此外,随着时间的推进,土壤SOC含量在生长季不同月份呈现先增后减的变化趋势,TN含量则呈现先减后增的变化趋势,而TP含量呈“M”型变化趋势。因此,随着全球降雨格局变化程度持续增加,较高的降雨频率会加剧高寒湿草甸浅层土壤氮磷含量的流失,造成高寒湿草甸水环境富营养化的危害加剧。
关宇淇, 李广, 潘雪, 徐国荣, 魏星星, 刘昊, 吴江琪. 降雨频率对甘南尕海湿草甸土壤碳氮磷化学计量特征的影响[J]. 干旱区研究, 2023, 40(6): 916-925.
GUAN Yuqi, LI Guang, PAN Xue, XU Guorong, WEI Xingxing, LIU Hao, WU Jiangqi. Effects of changing rainfall frequency on the soil carbon, nitrogen, and phosphorus ecostochimetrics in the Gahai wet meadow, Gannan[J]. Arid Zone Research, 2023, 40(6): 916-925.
表1
处理方式、土层、月份对土壤生态化学计量特征影响的方差分析"
方差来源 | SOC | TN | TP | C:N | C:P | N:P | |
---|---|---|---|---|---|---|---|
降雨频率 | 自由度 | 4 | 4 | 4 | 4 | 4 | 4 |
F值 | 522.055 | 240.096 | 58.947 | 202.930 | 4.318 | 204.931 | |
P值 | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | 0.000 | |
土层 | 自由度 | 2 | 2 | 2 | 2 | 2 | 2 |
F值 | 3341.065 | 119.452 | 11.545 | 66.519 | 133.260 | 9.001 | |
P值 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
月份 | 自由度 | 5 | 5 | 5 | 5 | 5 | 5 |
F值 | 47.385 | 29.222 | 8.958 | 18.609 | 13.783 | 41.572 | |
P值 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
降雨频率×土层 | 自由度 | 8 | 8 | 8 | 8 | 8 | 8 |
F值 | 16.471 | 21.120 | 13.321 | 207.342 | 11.465 | 25.543 | |
P值 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
降雨频率×月份 | 自由度 | 20 | 20 | 20 | 20 | 20 | 20 |
F值 | 154.343 | 79.503 | 24.511 | 49.565 | 13.572 | 27.815 | |
P值 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
土层×月份 | 自由度 | 10 | 10 | 10 | 10 | 10 | 10 |
F值 | 12.926 | 23.899 | 6.066 | 84.531 | 4.110 | 12.054 | |
P值 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
降雨频率×土层×月份 | 自由度 | 40 | 40 | 40 | 40 | 40 | 40 |
F值 | 27.670 | 24.977 | 12.802 | 10.999 | 10.584 | 15.810 | |
P值 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
[1] | 高君亮, 罗凤敏, 高永, 等. 农牧交错带不同土地利用类型土壤碳氮磷生态化学计量特征[J]. 生态学报, 2019, 39(15): 5594-5602. |
[Gao Junliang, Luo Fengmin, Gao Yong, et al. Ecological soil C, N,and P stoichiometry of different land use patterns in the agriculture-pasture ecotone of Northern China[J]. Acta Ecologica Sinica, 2019, 39(15): 5594-5602.] | |
[2] | Sterner R W, Elser J J. Ecological Stoichiometry: The Biology of Elements from Molecules to The Biosphere[M]. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere, 2002: 41-102. |
[3] |
刘岑薇, 郑向丽, 王俊宏, 等. 陆生和水域生态系统植物的C、N、P生态化学计量特征研究综述[J]. 中国农学通报, 2017, 33(17): 70-75.
doi: 10.11924/j.issn.1000-6850.casb16090094 |
[Liu Cenwei, Zheng Xiangli, Wang Junhong, et al. Reviews on ecological stoichiometry characteristics of C, N, P in terrestrial and aquatic plants[J]. Chinese Agricultural Science Bulletin, 2017, 33(17): 70-75.]
doi: 10.11924/j.issn.1000-6850.casb16090094 |
|
[4] | 张昊, 李建平, 王誉陶, 等. 封育与放牧对黄土高原天然草地土壤化学计量特征的影响[J]. 水土保持学报, 2020, 34(5): 251-258. |
[Zhang Hao, Li Jianping, Wang Yutao, et al. Effect of enclosure and grazing on the soil stoichiometry characteristics of natural grassland on the Loess Plateau[J]. Journal of Soil and Water Conservation, 2020, 34(5): 251-258.] | |
[5] | Zhou B T, Chao Q C, Huang L. The core conclusions and interpretation of working group Ⅰ contribution to the fifth assessment report of the intergovernmental panel on climate change[J]. Chinese Journal of Urban and Environmental Studies, 2015, 3(1): 46-52. |
[6] |
Singh D, Tsiang M, Rajaratnam B, et al. Precipitation extremes over the continental United states in a transient, high-resolution, ensemble climate model experiment[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(13): 7063-7086
doi: 10.1002/jgrd.v118.13 |
[7] | Endter-Wadaa J, Karin M Kettenring, Ariana Sutton-Grier. Protecting wetlands for people: Strategic policy action can help wetlands mitigate risks and enhance resilience[J]. Environmental Science and Policy, 2020, 108(C): 37-44. |
[8] | 陈新永. 干湿交替对人工湿地生态系统氮代谢影响的机理及其生态模型研究[D]. 上海: 华东师范大学, 2020. |
[Chen Xinyong. Study on Mechanism and Ecological Model of Nitrogen Metabolism in Constructed Wetland Ecosystem Affected by Dry-wet Alternation[D]. Shanghai: East China Normal University, 2020.] | |
[9] |
朱湾湾, 王攀, 樊瑾, 等. 降水量及N添加对宁夏荒漠草原土壤C:N:P生态化学计量特征和植被群落组成的影响[J]. 草业学报, 2019, 28(9): 33-44.
doi: 10.11686/cyxb2019232 |
[Zhu Wanwan, Wang Pan, Fan Jin, et al. Effects of precipitation and N addition on soil C:N:P ecological stoichiometry and plant community composition in a desert steppe of Ningxia, northwestern China[J]. Acta Prataculturae Sinica, 2019, 28(9): 33-44.]
doi: 10.11686/cyxb2019232 |
|
[10] | 张泽洲, 王冬梅, 李梦寻, 等. 干湿交替程度对土壤速效养分的影响[J]. 水土保持学报, 2021, 35(2): 265-270. |
[Zhang Zezhou, Wang Dongmei, Li Mengxun, et al. Effect of alternation degree of drying and wetting on soil available nutrients[J]. Journal of Soil and Water Conservation, 2021, 35(2): 265-270.] | |
[11] | Chu X J, Han G X, Wei S Y, et al. Seasonal not annual precipitation drives 8-year variability of interannual net CO2 exchange in a salt marsh[J]. Agricultural and Forest Meteorology, 2021, 123(6): 308-309. |
[12] | 王誉陶, 李建平, 井乐, 等. 模拟降雨对黄土高原典型草原土壤化学计量及微生物多样性的影响[J]. 生态学报, 2020, 40(5): 1517-1531. |
[Wang Yutao, Li Jianping, Jing Le, et al. Effects of different precipitation treatments on soil ecological chemistry and microbial diversity in the Loess Plateau[J]. Acta Ecologica Sinica, 2020, 40(5): 1517-1531.] | |
[13] |
Samuel Bartels. Water supply changes N and P conservation in a perennial grass leymus chinensis[J]. Journal of Integrative Plant Biology, 2009, 51(11): 1050-1056.
doi: 10.1111/jipb.2009.51.issue-11 |
[14] | 李佳佳, 樊妙春, 上官周平. 黄土高原南北样带刺槐林土壤碳、氮、磷生态化学计量特征[J]. 生态学报, 2019, 39(21): 7996-8002. |
[Li Jiajia, Fan Miaochun, Shangguan Zhouping. Ecostoichiometric characteristics of soil carbon, nitrogen and phosphorus of Robinia pseudoacacia forest on the north-south strip of the Loess Plateau[J]. Acta Ecologica Sinica, 2019, 39(21): 7996-8002.] | |
[15] |
Zhao Zhilong, Zhang Yili, Liu Linshan, et al. Recent changes in wetlands on the Tibetan Plateau: A review[J]. Journal of Geographical Sciences, 2015, 25(7): 879-896.
doi: 10.1007/s11442-015-1208-5 |
[16] |
马维伟, 王辉, 王跃思, 等. 甘南尕海草甸湿地不同海拔高度土壤性状研究[J]. 草地学报, 2012, 20(6): 1044-1050.
doi: 10.11733/j.issn.1007-0435.2012.06.010 |
[Ma Weiwei, Wang Hui, Wang Yuesi, et al. Soil properties of meadow wetlands for different altitudes in Gahai of Gannan[J]. Acta Agrestia Sinica, 2012, 20(6): 1044-1050.]
doi: 10.11733/j.issn.1007-0435.2012.06.010 |
|
[17] |
吴江琪, 马维伟, 李广, 等. 尕海湿草甸不同地下水位土壤理化特征的比较分析[J]. 草地学报, 2018, 26(2): 341-347.
doi: 10.11733/j.issn.1007-0435.2018.02.010 |
[Wu Jiangqi, Ma Weiwei, Li Guang, et al. Comparative analysis of physicochemical property of soil with different groundwater level in Gahai swamp meadow wetlan[J]. Acta Agrestia Sinica, 2018, 26(2): 341-347.]
doi: 10.11733/j.issn.1007-0435.2018.02.010 |
|
[18] | 辛玉梅, 史静, 武慧娟, 等. 碌曲县尕海湿地植物资源及区系研究[J]. 青海草业, 2012, 21(Z1): 55-57, 35. |
[Xin Yumei, Shi Jing, Wu Huijuan, et al. Research of vrgrtsion resources and district in Luqu County[J]. Qinghai Prataculture, 2012, 21 (Z1): 55-57, 35.] | |
[19] |
Fan J, Sun W, Zhao Y, et al. Trend analyses of extreme precipitation events in the Yarlung Zangbo River Basin, China using a high-resolution precipitation product[J]. Sustainability, 2018, 10(5): 1396-1396.
doi: 10.3390/su10051396 |
[20] |
Wu J Q, Wang H Y, Li G, et al. Responses of CH4 flux and microbial diversity to changes in rainfall amount and frequencies in a wet meadow in the Tibetan Plateau[J]. Catena, 2021, 202: 105253.
doi: 10.1016/j.catena.2021.105253 |
[21] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. |
[Bao Shidan. Agrochemical Analysis of Soil[M]. Beijing: China Agricultural Publishing House, 2000.] | |
[22] |
Rawls W J, Pachepsky Y A, Ritchie J C, et al. Effect of soil organic carbon on soil water retention[J]. Geoderma, 2003, 116(1-2): 61-76.
doi: 10.1016/S0016-7061(03)00094-6 |
[23] |
Wang Y Q, Zhang X C, Huang C Q. Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau[J]. Geoderma, 2009, 150(1-2): 141-149.
doi: 10.1016/j.geoderma.2009.01.021 |
[24] |
Michaels A F. Biogeochemistry: The ratios of life[J]. Science, 2003, 300(5621): 906-907.
doi: 10.1126/science.1083140 |
[25] | 李婷, 邓强, 袁志友, 等. 黄土高原纬度梯度上的植物与土壤碳、氮、磷化学计量学特征[J]. 环境科学, 2015, 36(8): 2988-2996. |
[Li Ting, Deng Qiang, Yuan Zhiyou, et al. Latitudinal changes in plant stoichiometric and soil C, N, P stoichiometry in Loess Plateau[J]. Environmental Science, 2015, 36(8): 2988-2996.] | |
[26] | 张宏斌, 孟好军, 赵维俊, 等. 黑河流域中游芦苇湿地土壤碳垂直分布特征[J]. 生态科学, 2016, 35(2): 123-127. |
[Zhang Hongbin, Meng Haojun, Zhao Weijun, et al. Vertical distribution characteristics of soil carbon of reed wetland in middle region of Heihe Basin[J]. Ecological Science, 2016, 35(2): 123-127.] | |
[27] | 刘兴华, 陈为峰, 段存国, 等. 黄河三角洲未利用地开发对植物与土壤碳、氮、磷化学计量特征的影响[J]. 水土保持学报, 2013, 27(2): 204-208. |
[Liu Xinghua, Chen Weifeng, Duan Cunguo, et al. Effect of exploitation of unutilized land on ecological stoichiometry characteristics of plants and soil carbon, nitrogen and phosphorus in the Yellow River Delta[J]. Journal of Soil and Water Conservation, 2013, 27(2): 204-208.] | |
[28] | 赵云飞, 洪苗苗, 欧延升, 等. 青藏高原东部山地草地土壤碳、氮、磷元素计量特征[J]. 生态科学, 2018, 37(5): 25-32. |
[Zhao Yunfei, Hong Miaomiao, Ou Yansheng, et al. The stoichiometric characteristics of soil C, N, P in mountain steppe of eastern Tibetan Plateau[J]. Ecological Science, 2018, 37(5): 25-32.] | |
[29] | 李国荣, 李希来, 陈文婷, 等. 降雨侵蚀对退化草地土壤养分含量的影响[J]. 水土保持研究, 2018, 25(2): 40-45. |
[Li Guorong, Li Xilai, Chen Wenting, et al. Influences of rain erosion on soil nutrient contents of the deteriorated grassland[J]. Research on Water and Soil Conservation, 2018, 25(2): 40-45.] | |
[30] | 李博, 杨持, 林鹏. 生态学[M]. 北京: 高等教育出版社, 2000. |
[Li Bo, Yang Chi, Lin Peng. Ecology[M]. Beijing: Higher Education Press, 2000.] | |
[31] |
Sun Y, Wang C T, Luo X S, et al. Asymmetric responses of terrestrial C:N:P stoichiometry to precipitation change[J]. Global Ecology and Biogeography, 2021, 30(8): 1724-1735.
doi: 10.1111/geb.v30.8 |
[32] | 罗亚勇, 张宇, 张静辉, 等. 不同退化阶段高寒草甸土壤化学计量特征[J]. 生态学杂志, 2012, 31(2): 254-260. |
[Luo Yayong, Zhang Yu, Zhang Jinghui, et al. Soil stoichiometry characteristics of alpine meadow at its different degradation stages[J] Chinese Journal of Ecology, 2012, 31(2): 254-260.] | |
[33] | 冯德枫, 包维楷. 土壤碳氮磷化学计量比时空格局及影响因素研究进展[J]. 应用与环境生物学报, 2017, 23(2): 400-408. |
[Feng Defeng, Bao Weikai. Review of the temporal and spatial patterns of soil C:N:P stoichiometry and its driving factors[J]. Chinese Journal of Applied and Environmental Biology, 2017, 23(2): 400-408.] | |
[34] |
Tian H, Chen G, Chi Z, et al. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data[J]. Biogeochemistry, 2010, 98(s1-3): 139-151.
doi: 10.1007/s10533-009-9382-0 |
[35] |
Mikha M M, Rice C W, Milliken G A. Carbon and nitrogen mineralization as affected by drying and wetting cycles[J]. Soil Biology & Biochemistry, 2005, 37(2): 339-347.
doi: 10.1016/j.soilbio.2004.08.003 |
[36] |
Borken W, Davidson E A, Savage K, et al. Drying and wetting effects on carbon dioxide release from organic horizons[J]. Soil Science Society of America Journal, 2003, 67(6): 1888-1896.
doi: 10.2136/sssaj2003.1888 |
[37] |
Ren H, Xu Z, Huang J, et al. Nitrogen and water addition reduce leaf longevity of steppe species[J]. Annals of Botany, 2011, 107(1): 145-155.
doi: 10.1093/aob/mcq219 pmid: 21084404 |
[38] |
Rupp H, Meissner R, Leinweber P. Plant available phosphorus in soil as predictor for the leaching potential: Insights from long-term lysimeter studies[J]. Ambio: A Journal of the Human Environment, 2018, 47(S1): 103-113.
doi: 10.1007/s13280-017-0975-x |
[39] | 贺合亮, 阳小成, 王东, 等. 青藏高原东部窄叶鲜卑花灌丛土壤C、N、P生态化学计量学特征[J]. 应用与环境生物学报, 2015, 21(6): 1128-1135. |
[He Heliang, Yang Xiaocheng, Wang Dong, et al. Ecological stoichiometric characteristics of soil carbon, nitrogen and phosphorus of Sibiraea angustata shrub in eastern Qinghai-Tibetan Plateau[J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(6): 1128-1135.] | |
[40] | 宋长春, 宋艳宇, 王宪伟, 等. 气候变化下湿地生态系统碳、氮循环研究进展[J]. 湿地科学, 2018, 16(3): 424-431. |
[Song Changchun, Song Yanyu, Wang Xianwei, et al. Advance in researches on carbon and nitrogen cycles in wetland ecosystems under climate change[J]. Wetland Science, 2018, 16(3): 424-431.] | |
[41] |
Wang H, Mo J M, Liu S R, et al. Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China[J]. Ecological Research, 2010, 25(6): 1071-1079.
doi: 10.1007/s11284-010-0730-2 |
[42] |
Sardans J Penuelas. Plant-soil interactions in mediterranean forest and shrublands: Impacts of climatic change[J]. Plant and Soil, 2013, 365(1-2): 1-33.
doi: 10.1007/s11104-013-1591-6 pmid: 31031420 |
[43] | 范志平, 王琼, 李法云. 辽东山地不同森林类型土壤有机碳季节动态及其驱动因子[J]. 生态学杂志, 2018, 37(11): 3220-3230. |
[Fan Zhiping, Wang Qiong, Li Fayun. Seasonal dynamics of soil organic carbon in different forest types and its driving factors in mountainous region of eastern Liaoning[J]. Chinese Journal of Ecology, 2018, 37(11): 3220-3230.] | |
[44] | 陈怀璞, 张天雨, 葛振鸣, 等. 崇明东滩盐沼湿地土壤碳氮储量分布特征[J]. 生态与农村环境学报, 2017, 33(3): 242-251. |
[Chen Huaipu, Zhang Tianyu, Ge Zhenming, et al. Distribution of soil carbon and nitrogen stocks in salt marsh wetland in Dongtan of Chongming[J]. Journal of Ecology and Rural Environment, 2017, 33(3): 242-251.] |
[1] | 王雪莹, 谷黄河, 代斌, 张瀚文, 余钟波. 不同水平分辨率区域气候模式对青藏高原气候特征模拟[J]. 干旱区研究, 2024, 41(3): 363-374. |
[2] | 许宁, 李治国, 梁雪悦, 周晓莹. 基于地形梯度的青藏高原冰川分布格局及成因[J]. 干旱区研究, 2024, 41(2): 230-239. |
[3] | 其美拉姆, 郑诚, 袁浏欢, 吴沛桐, 谭凯, 申乔天, 史海静. 青藏高原植被光能利用效率时空变化[J]. 干旱区研究, 2024, 41(10): 1731-1739. |
[4] | 申红艳, 温婷婷, 赵仙荣, 冯晓莉. 基于多模式的青藏高原前冬降水预测性能评估[J]. 干旱区研究, 2023, 40(7): 1027-1039. |
[5] | 王鹏, 秦思彤, 胡慧蓉. 近30 a拉萨河流域土地利用变化和生境质量的时空演变特征[J]. 干旱区研究, 2023, 40(3): 492-503. |
[6] | 秦昊德,李广,吴江琪,魏星星,王海燕,徐国荣. 降雨频率变化对尕海湿草甸土壤氮组分的影响[J]. 干旱区研究, 2022, 39(4): 1191-1199. |
[7] | 温婷婷,郭英香,董少睿,东元祯,来晓玲. 1979—2017年CRU、ERA5、CMFD格点降水数据在青藏高原适用性评估[J]. 干旱区研究, 2022, 39(3): 684-697. |
[8] | 张君霞,孔祥伟,刘新伟,王勇. 青藏高原东北侧暴雨数值模式预报空间误差特征[J]. 干旱区研究, 2022, 39(1): 64-74. |
[9] | 席文涛,高晶. 基于地理探测器分析青藏高原降水δ18O空间分异特征[J]. 干旱区研究, 2021, 38(5): 1199-1206. |
[10] | 杨昭明,张调风. 1961—2017年青藏高原东北部雨季降水量变化及其贡献度分析[J]. 干旱区研究, 2021, 38(1): 22-28. |
[11] | 王坤鑫, 张寅生, 张腾, 余坤伦, 郭燕红, 马宁. 1979—2017年青藏高原色林错流域气候变化分析[J]. 干旱区研究, 2020, 37(3): 652-. |
[12] | 金孙梅, 侯光良, 许长军, 兰措卓玛, 李生梅. 全新世以来青藏高原文化遗址时空演变及其驱动 [J]. 干旱区研究, 2019, 36(5): 1049-1059. |
[13] | 祁艳, 颜玉倩, 李金海, 陈汶江. 青藏高原5—10月地表潜热通量与青海同期降水之间的关系[J]. 干旱区研究, 2019, 36(3): 529-536. |
[14] | 李艳萍, 史利江, 徐满厚, 李文刚. 短期增温下青藏高原多年冻土区植物生长季土壤水分的动态变化[J]. 干旱区研究, 2019, 36(3): 537-545. |
[15] | 汪步惟, 张雪芹. 1971—2014年青藏高原参考蒸散变化及其归因[J]. 干旱区研究, 2019, 36(2): 269-279. |
|