干旱区研究 ›› 2025, Vol. 42 ›› Issue (9): 1563-1573.doi: 10.13866/j.azr.2025.09.02 cstr: 32277.14.AZR.20250902

• 天气与气候 • 上一篇    下一篇

甘肃省数值模式暴雨预报效果比较与性能评估

彭筱1(), 孔祥伟1(), 陈晓燕2, 吴晶1, 伏晶1, 李文学1   

  1. 1.兰州中心气象台,甘肃 兰州 730020
    2.中国气象局兰州干旱气象研究所,甘肃 兰州 730020
  • 收稿日期:2024-08-27 修回日期:2025-04-22 出版日期:2025-09-15 发布日期:2025-09-16
  • 通讯作者: 孔祥伟. E-mail: xiangwei580@163.com
  • 作者简介:彭筱(1990-),女,高级工程师,主要从事数值天气预报及模式检验研究. E-mail: 13739311069@163.com
  • 基金资助:
    甘肃省自然科学基金(24JRRA1182);甘肃省气象局气象科研项目(Ms2023-11);兰州中心气象台业务科技创新基金项目(LCMO-202304)

Comparison and performance evaluation of numerical model rainstorm prediction in Gansu Province

PENG Xiao1(), KONG Xiangwei1(), CHEN Xiaoyan2, WU Jing1, FU Jing1, LI Wenxue1   

  1. 1. Lanzhou Central Meteorological Observatory, Lanzhou 730020, Gansu, China
    2. Institute of Arid Meteorology, China Meteorological Administration, Lanzhou 730020, Gansu, China
  • Received:2024-08-27 Revised:2025-04-22 Published:2025-09-15 Online:2025-09-16

摘要:

利用国家气象站降水观测资料,基于MET检验系统对2022年主汛期甘肃暴雨过程中欧洲中期天气预报中心全球模式(ECMWF)、中国气象局全球同化预报系统(CMA-GFS)、中国气象局中尺度天气数值预报系统(CMA-MESO)和中国气象局上海数值预报模式系统(CMA-SH9)的降水预报性能进行评估,结果表明:(1) 四种数值模式的晴雨准确率相差不大,均在0.80以上。对≥50 mm降水预报的TS评分,CMA-SH9评分最高,CMA-MESO次之。(2) 根据影响系统及环流形势特征将甘肃主汛期暴雨分为副高边缘型、西北气流型和低槽型三种类型。对≥50 mm降水预报,四种模式中CMA-SH9模式预报效果最好,尤其是对于低槽型暴雨过程,其次是副高边缘型。(3) 基于MODE空间检验发现,对≥50 mm降水预报,CMA-MESO、CMA-SH9两个区域模式预报能力优于ECMWF、CMA-GFS两个全球模式;7月14日暴雨过程中CMA-SH9模式预报暴雨的质心距离和轴角偏差相对偏小,对暴雨的位置与空间走向预报最接近实况。

关键词: 数值模式, 性能评估, 暴雨, 空间检验, 甘肃

Abstract:

Using the precipitation observation data of the National Meteorological Station and based on the model evaluation tools test system, an evaluation was conducted on the precipitation prediction performance of the European Centre for Medium-Range Weather Forecasts (ECMWF), Global Assimilation Prediction System of China Meteorological Administration (CMA) Global Forecast System, Mesoscale Weather Numerical Prediction System of CMA CMA-SH9 during the 2022 Gansu main flood season rainstorm. The Mesoscale (CMA-MESO), and Shanghai Numerical Prediction Model of results demonstrate that: (1) The four numerical models show similar accuracy in predicting sunny and rainy weather, all above 0.80, with CMA-SH9 achieving the highest score for precipitation forecasts ≥50 mm, followed by CMA-MESO. (2) According to the characteristics of the impact system and circulation situation, the rainstorm in the main flood season in Gansu Province can be divided into three types: subtropical high marginal, northwest airflow, and low trough. The CMA-SH9 model has the best prediction effect for precipitation ≥50 mm, particularly for low-trough rainstorm processes, followed by the subtropical high marginal type. (3) Method for Object-based Diagonostic Evaluation spatial test indicates that the CMA-MESO and CMA-SH9 regional models outperform the ECMWF and CMA-GFS global models in forecasting ≥50 mm precipitation. In the rainstorm process on July 14, the CMA-SH9 model predicted that the centroid distance and axial angle deviation of the rainstorm were relatively small, and the prediction of rainstorm location and spatial trend was most close to the actual situation.

Key words: numerical model, performance evaluation, rainstorm, spatial verification, Gansu