干旱区研究 ›› 2025, Vol. 42 ›› Issue (8): 1379-1383.doi: 10.13866/j.azr.2025.08.03 cstr: 32277.14.AZR.20250803
申燕玲1,2,3(
), 曹晓敏1,2(
), 马元仓1,2, 王振海4
收稿日期:2025-03-21
修回日期:2025-06-18
出版日期:2025-08-15
发布日期:2025-11-24
通讯作者:
曹晓敏. E-mail: qxtcxm@163.com作者简介:申燕玲(1992-),女,硕士研究生,主要从事数值天气预报、模式检验及高原天气系统机理相关研究. E-mail: shenpika@163.com
基金资助:
SHEN Yanling1,2,3(
), CAO Xiaomin1,2(
), MA Yuancang1,2, WANG Zhenhai4
Received:2025-03-21
Revised:2025-06-18
Published:2025-08-15
Online:2025-11-24
摘要:
基于2005—2021年青海省夏季逐小时站点观测数据,从不同时间尺度、日变化、海拔等多角度对中国气象局陆面数据同化系统(China Meteorological Administration Land Data Assimilation System,CLDAS)与全球降水测量数据(Global Precipitation Measurement,GPM)进行准确性评估,结果表明:CLDAS总体优于GPM。CLDAS与GPM降水产品均倾向于高估弱降水的降水量和降水频率,低估强降水的降水量和降水频率。CLDAS对降水量、降水频率日变化特征及不同海拔的评估准确性表现均优于GPM,但在湖泊群附近存在异常大值。随着海拔升高,CLDAS与GPM的降水量和降水频率与海拔的相关性均逐渐增强,且CLDAS的相关性上升趋势更为显著。GPM则表现出高估低海拔地区的降水量和降水频率,低估高海拔地区的降水量和降水频率的特点。
申燕玲, 曹晓敏, 马元仓, 王振海. CLDAS和GPM降水数据产品在青海省的适用性评估[J]. 干旱区研究, 2025, 42(8): 1379-1383.
SHEN Yanling, CAO Xiaomin, MA Yuancang, WANG Zhenhai. Assessment of the applicability of CLDAS and GPM precipitation data for precipitation in Qinghai Province[J]. Arid Zone Research, 2025, 42(8): 1379-1383.
| [1] |
黄建平, 刘玉芝, 王天河, 等. 青藏高原及周边地区气溶胶、云和水汽收支研究进展[J]. 高原气象, 2021, 40(6): 1225-1240.
doi: 10.7522/j.issn.1000-0534.2021.zk012 |
|
[Huang Jianping, Liu Yuzhi, Wang Tianhe, et al. An overview of the aerosol and cloud properties and water vapor budget over the Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2021, 40(6): 1225-1240.]
doi: 10.7522/j.issn.1000-0534.2021.zk012 |
|
| [2] | 尹泓琳. 三江源典型流域降雨—径流模拟及驱动因素研究[D]. 西宁: 青海大学, 2019. |
| [Yin Honglin. Study on Rainfall-runoff Simulation and Driving Factors in Typical Watersheds of the Three-river Headwaters[D]. Xining: Qinghai University, 2019.] | |
| [3] |
谷昌军, 张镱锂, 刘林山, 等. 2000—2020年三江源草地绿度变化及其对气候变化的响应[J]. 地理科学, 2025, 45(1): 214-226.
doi: 10.13249/j.cnki.sgs.20220774 |
| [Gu Changjun, Zhang Yili, Liu Linshan, et al. Grassland greenness change and its response to climate change in Three River Headwater region in 2000-2020[J]. Geographical Science, 2025, 45(1): 214-226.] | |
| [4] |
Zheng Y, Xue M, Li B, et al. Spatial characteristics of extreme rainfall over China with hourly through 24-hour accumulation periods based on national-level hourly rain gauge data[J]. Advances in Atmospheric Sciences, 2016, 33(11): 1218-1232.
doi: 10.1007/s00376-016-6128-5 |
| [5] | Yao X, Zhang X, Ma J. Characteristics of the meridionally oriented shear lines over the Tibetan Plateau and its relationship with rainstorms in the boreal summer half-year[J]. Journal of Tropical Meteorology, 2020, 26(1): 95-104. |
| [6] |
Chen H, Yu R, Shen Y. A new method to compare hourly rainfall between station observations and satellite products over central-eastern China[J]. Journal of Meteorological Research, 2016, 30(5): 737-757.
doi: 10.1007/s13351-016-6002-5 |
| [7] | 金晓龙, 邵华, 张弛, 等. GPM 卫星降水数据在天山山区的适用性分析[J]. 自然资源学报, 2016, 31(12): 2074-2085. |
|
[Jin Xiaolong, Shao Hua, Zhang Chi, et al. The applicability evaluation of three satellite products in Tianshan Mountains[J]. Journal of Natural Resources, 2016, 31(12): 2074-2085.]
doi: 10.11849/zrzyxb.20160057 |
|
| [8] |
Kidd C, Levizzani V. Status of satellite precipitation retrievals[J]. Hydrology and Earth System Sciences, 2011, 15(4): 1109-1116.
doi: 10.5194/hess-15-1109-2011 |
| [9] |
Zhang S, Wang D, Qin Z, et al. Assessment of the GPM and TRMM precipitation products using the rain gauge network over the Tibetan Plateau[J]. Journal of Meteorological Research, 2018, 32(2): 324-336.
doi: 10.1007/s13351-018-7067-0 |
| [10] |
师春香, 谢正辉. 基于静止气象卫星观测的降水时间降尺度研究[J]. 地理科学进展, 2008, 27(4): 15-22.
doi: 10.11820/dlkxjz.2008.04.003 |
| [Shi Chunxiang, Xie Zhenghui. A time downscaling scheme of precipitation by using geostationary meteorological satellite data[J]. Journal of Advances in Geographic Sciences, 2008, 27(4): 15-22.] | |
| [11] | 张蒙, 黄安宁, 计晓龙, 等. 卫星反演降水资料在青藏高原地区的适用性分析[J]. 高原气象, 2016, 35(1): 34-42. |
| [Zhang Meng, Huang Anning, Ji Xiaolong, et al. Validation of satellite precipitation products over Qinghai-Xizang Plateau region[J]. Plateau Meteorology, 2016, 35(1): 34-42.] | |
| [12] | Wu L, Zhai P. Validation of daily precipitation from two high-resolution satellite precipitation datasets over the Tibetan Plateau and the regions to its east[J]. Journal of Meteorological Research, 2012, 26(6): 735-745. |
| [13] |
余坤伦, 张寅生, 马宁, 等. GPM和TRMM遥感降水产品在青藏高原中部的适用性评估[J]. 干旱区研究, 2018, 35(6): 1373-1381.
doi: 10.13866/j.azr.2018.06.14 |
|
[Yu Kunlun, Zhang Yinsheng, Ma Ning, et al. Applicability of GPM and TRMM remote sensing precipitation products in the central Xizang Plateau[J]. Arid Zone Research, 2018, 35(6): 1373-1381.]
doi: 10.13866/j.azr.2018.06.14 |
|
| [14] |
Mou T, Zheng D. Assessment of GPM and TRMM precipitation products over Singapore[J]. Remote Sensing, 2017, 9(7): 720-742.
doi: 10.3390/rs9070720 |
| [15] |
Gao C, Liu F. Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau[J]. Hydrology and Earth System Sciences, 2013, 17(2): 837-859.
doi: 10.5194/hess-17-837-2013 |
| [16] |
Lin Z, Yao X, Du J, et al. Refined evaluation of satellite precipitation products against rain gauge observations along the Sichuan railway[J]. Journal of Meteorological Research, 2022, 36(5): 779-797.
doi: 10.1007/s13351-022-1226-z |
| [17] |
Habib E, Elsaadani M, Haile A T. Climatology-focused evaluation of CMORPH and TMPA satellite rainfall products over the Nile basin[J]. Journal of Applied Meteorology and Climatology, 2012, 51(12): 2105-2121.
doi: 10.1175/JAMC-D-11-0252.1 |
| [18] |
Wang H, Yuan Y, Zeng S, et al. Evaluation of satellite-based precipitation products from GPM IMERG and GSMaP over the Three-River Headwaters region, China[J]. Hydrology Research, 2021, 52(6): 1328-1343.
doi: 10.2166/nh.2021.029 |
| [19] | Wang Y, Miao C, Zhao X, et al. Evaluation of the GPM IMERG product at the hourly timescale over China[J]. Atmospheric Research, 2023, 10(285): 106-126. |
| [20] |
Tian F, Hou S, Yang L, et al. How does the evaluation of the GPM IMERG rainfall product depend on gauge density and rainfall intensity[J]. Journal of Hydrometeorology, 2018, 19(2): 339-349.
doi: 10.1175/JHM-D-17-0161.1 |
| [21] |
Hou A Y, Kakar R K. The global precipitation measurement mission[J]. Bulletin of the American Meteorological Society, 2014, 95(5): 701-722.
doi: 10.1175/BAMS-D-13-00164.1 |
| [22] |
粟运, 师春香, 毛文书, 等. 基于CLDAS-Prcp多源融合降水产品的WRF-Hydro模式在綦江流域的水文效用[J]. 高原气象, 2022, 41(3): 617-629.
doi: 10.7522/j.issn.1000-0534.2021.00073 |
|
[Su Yun, Shi Chunxiang, Mao Wenshu, et al. Hydrological utility of CLDAS-Prcp multi-source fusion precipitation products in Qijiang River Basin: Taking WRF-Hydro Model as an example[J]. Plateau Meteorology, 2022, 41(3): 617-629.]
doi: 10.7522/j.issn.1000-0534.2021.00073 |
|
| [23] |
Sun S, Shi C, Pan Y, et al. Applicability assessment of the 1998-2018 CLDAS multi-source precipitation fusion dataset over China[J]. Journal of Meteorological Research, 2020, 34(4): 879-892.
doi: 10.1007/s13351-020-9101-2 |
| [24] |
Zhang X, Yao X, Ma J, et al. Climatology of transverse shear lines related to heavy rainfall over the Tibetan Plateau during boreal summer[J]. Journal of Meteorological Research, 2016, 30(6): 915-926.
doi: 10.1007/s13351-016-6952-7 |
| [25] |
唐国强, 万玮, 曾子悦, 等. 全球降水测量(GPM)计划及其最新进展综述[J]. 遥感技术与应用, 2015, 30(4): 607-615.
doi: 10.11873/j.issn.1004-0323.2015.4.0607 |
| [Tang Guoqiang, Wan Wei, Zeng Ziyue, et al. An overview of the global precipitation measurement (GPM) mission and its latest development[J]. Remote Sensing Technology and Application, 2015, 30(4): 607-615.] | |
| [26] | 任鹏臻, 邸少宇, 刘锐, 等. GPM IMERG卫星降水数据在青海的适用性评价[J]. 青海大学学报, 2024, 42(4): 56-63. |
| [Ren Pengzhen, Di Shaoyu, Liu Rui, et al. Applicability evaluation of GPM IMERG satellite precipitation data in Qinghai[J]. Journal of Qinghai University, 2024, 42(4): 56-63.] | |
| [27] | 中国气象局. 地面气象观测规范[M]. 北京: 气象出版社, 2003. |
| [China Meteorological Administration. The Criterion of Surface Meteorological Observation[M]. Beijing: China Meteorological Press, 2003.] | |
| [28] |
Zhang S, Wang D, Qin Z, et al. Assessment of the GPM and TRMM precipitation products using the rain gauge network over the Tibetan Plateau[J]. Journal of Meteorological Research, 2018, 32(3): 324-336.
doi: 10.1007/s13351-018-7067-0 |
| [29] |
Ebert E, Elizabeth J, Kidd C, et al. Comparison of near-real-time precipitation estimates from satellite observations and numerical models[J]. Bulletin of the American Meteorological Society, 2007, 88(8): 47-64.
doi: 10.1175/BAMS-88-1-47 |
| [30] |
Szolgay J, Parajka J, Kohnova S, et al. Comparison of mapping approaches of design annual maximum daily precipitation[J]. Atmospheric Research, 2009, 92(3): 289-307.
doi: 10.1016/j.atmosres.2009.01.009 |
| [31] |
Yu R, Li J, Chen H, et al. Progress in studies of the precipitation diurnal variation over contiguous China[J]. Journal of Meteorological Research, 2014, 28(5): 877-902.
doi: 10.1007/s13351-014-3272-7 |
| [32] | 吴璐. 青藏高原与其东侧四川盆地降水日变化差异研究[D]. 北京: 中国气象科学研究院, 2012. |
| [Wu Lu. Discrepancy of Precipitation Diurnal Cycles between the Tibetan Plateau and its Neighboring Sichuan basin in Warm Season[D]. Beijing: Chinese Academy of Meteorological Sciences, 2012.] | |
| [33] | 白爱娟, 刘长海, 刘晓东, 等. TRMM多卫星降水分析资料揭示的青藏高原及其周边地区夏季降水日变化[J]. 地球物理学报, 2008, 51(3): 704-714. |
| [Bai Aijuan, Liu Changhai, Liu Xiaodong. Diurnal variation of summer rainfall over the Tibetan Plateau and its neighboring regions revealed by TRMM multi-satellite precipitation analysis[J]. Chinese Journal of Geophysics, 2008, 51(3): 704-714.] | |
| [34] | Liu X, Bai A, Liu C. Diurnal variations of summertime precipitation over the Tibetan Plateau in relation to orographically-induced regional circulations[J]. Environmental Research Letters, 2009, 4(4): 45-73. |
| [35] |
Li J. Hourly station-based precipitation characteristics over the Tibetan Plateau[J]. International Journal of Climatology, 2018, 38(3): 1560-1570.
doi: 10.1002/joc.2018.38.issue-3 |
| [36] | Wu Y, Huang A, Huang D, et al. Diurnal variations of summer precipitation over the regions east to Tibetan Plateau[J]. Climate Dynamics, 2018, 5(1): 4287-4307. |
| [37] |
Yu L, Ma L, Li H, et al. Assessment of high-resolution satellite rainfall products over a gradually elevating mountainous terrain based on a high-density rain gauge network[J]. International Journal of Remote Sensing, 2020, 41(14): 5620-5644.
doi: 10.1080/01431161.2020.1734255 |
| [38] |
Tang G, Long D, Hong Y, et al. Documentation of multifactorial relationships between precipitation and topography of the Tibetan Plateau using spaceborne precipitation radars[J]. Remote Sensing of Environment, 2018, 208(1): 82-96.
doi: 10.1016/j.rse.2018.02.007 |
| [39] |
Li Q, Wei J, Yin J, et al. Multiscale comparative evaluation of the GPM and TRMM precipitation products against ground precipitation observations over Chinese Tibetan Plateau[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14: 2295-2313.
doi: 10.1109/JSTARS.4609443 |
| [1] | 谢刚, 王甜甜, 于涛, 董靖玮, 陈世强, 王梦晓, 张圣杰, 张浩铭. 青海湖入湖口水温演变初步研究[J]. 干旱区研究, 2024, 41(9): 1503-1513. |
| [2] | 崔国龙, 李强峰, 高英, 刘维军, 张梅. 青海大通北川河源区典型植被土壤微生物群落结构特征及影响因素[J]. 干旱区研究, 2024, 41(7): 1195-1206. |
| [3] | 蔡玉琴, 祁栋林, 王烈福, 李海凤, 张德琴. 青海省不同等级寒冷日数时空演变特征[J]. 干旱区研究, 2024, 41(5): 742-752. |
| [4] | 王启花, 林春英, 刘潇, 张莉燕, 赵占秀, 张博越, 龚静. 青海东北部一次典型冰雹过程的观测分析[J]. 干旱区研究, 2024, 41(2): 200-210. |
| [5] | 严莉, 曹广超, 康利刚, 刘梦琳, 叶得力. 基于InVEST模型的共和县生境质量时空变化及驱动因素[J]. 干旱区研究, 2024, 41(2): 314-325. |
| [6] | 李永广, 苑广辉. 青海湖流域不同下垫面类型对地表温度的生物物理影响[J]. 干旱区研究, 2024, 41(1): 24-35. |
| [7] | 孙宽, 孙雪岩, 唐艳, 张亚玲, 刘富刚, 范克胜, 杨子琼, 屈志强. 青海省多年地表感热通量的时空变化特征[J]. 干旱区研究, 2024, 41(1): 36-49. |
| [8] | 邱巡巡, 曹广超, 张进虎, 张卓, 刘梦琳. 祁连山南坡青海云杉林碳密度随海拔分布特征[J]. 干旱区研究, 2023, 40(4): 615-622. |
| [9] | 康利刚, 曹生奎, 曹广超, 杨羽帆, 严莉, 王有财. 青海湖沙柳河流域蒸散发时空变化特征[J]. 干旱区研究, 2023, 40(3): 358-372. |
| [10] | 李素雲, 祁栋林, 温婷婷, 史飞飞, 乔斌, 肖建设. 1961—2020年青海省饱和水汽压差变化特征及影响因子分析[J]. 干旱区研究, 2023, 40(2): 173-181. |
| [11] | 吴雪晴, 张乐乐, 高黎明, 李炎坤, 刘轩辰. 青海湖流域NPP动态变化及驱动力[J]. 干旱区研究, 2023, 40(11): 1824-1832. |
| [12] | 李炎坤,高黎明,张乐乐,吴雪晴,刘轩辰,祁闻. 青海湖流域及周边区域TRMM 3B43降水数据降尺度方法对比分析[J]. 干旱区研究, 2022, 39(6): 1706-1716. |
| [13] | 王永辉,冶晓娟,潘红忠,白钰,董得福,姚华明. 气候暖湿化评价指数构建及在青海省的应用[J]. 干旱区研究, 2022, 39(5): 1437-1448. |
| [14] | 冶晓娟,王永辉,潘红忠,白钰,董得福,姚华明. 青海省植被NEP时空变化及驱动因素分析[J]. 干旱区研究, 2022, 39(5): 1673-1683. |
| [15] | 祝存兄,史飞飞,乔斌,张娟,陈国茜. 基于高分1号卫星数据的青海湖扩张及湖滨沙地变化特征分析[J]. 干旱区研究, 2022, 39(4): 1076-1089. |
|
||