干旱区研究 ›› 2025, Vol. 42 ›› Issue (8): 1369-1378.doi: 10.13866/j.azr.2025.08.02 cstr: 32277.14.AZR.20250802
李万志1,2(
), 段丽君1,2(
), 刘振磊3, 祁门紫仪1, 余迪1, 姚海俊4
收稿日期:2025-02-16
修回日期:2025-06-16
出版日期:2025-08-15
发布日期:2025-11-24
通讯作者:
段丽君. E-mail: duanljlz@163.com作者简介:李万志(1984-),男,副高级工程师,主要从事气象灾害风险评估研究. E-mail: li_wanzhi@163.com
基金资助:
LI Wanzhi1,2(
), DUAN Lijun1,2(
), LIU Zhenlei3, QI Menziyi1, YU Di1, YAO Haijun4
Received:2025-02-16
Revised:2025-06-16
Published:2025-08-15
Online:2025-11-24
摘要:
受气候变暖影响,黄河上游地区暴雨灾害多发,影响了流域长治久安和生态安全。本研究基于1961—2022年黄河上游地区33个气象站观测数据,分析了气候变暖背景下暴雨过程强度及其致灾危险性演变特征,结果表明:(1) 黄河上游地区年平均气温整体呈升高趋势,升温速率为0.38 ℃·(10a)-1,年平均气温在1997年发生突变,1997年后升温更加显著。(2) 暴雨过程次数及其强度均呈增加趋势,其中过程日最大降水量、累计降水量、持续天数在气候增温突变前呈减少趋势,突变后则显著增加,暴雨极端性增强。(3) 气候增温突变后暴雨灾害致灾危险性高等级区面积显著增大,其中高危险区、较高危险区、中等危险区的面积占比分别增加了1.59%、11.46%和31.64%,低危险区则减少了44.69%,高危险区主要分布在人口和经济密集的东北部。研究成果可为了解黄河上游地区暴雨灾害的演变规律及其防御和治理提供支撑。
李万志, 段丽君, 刘振磊, 祁门紫仪, 余迪, 姚海俊. 气候变暖背景下黄河上游地区暴雨灾害致灾危险性演变特征[J]. 干旱区研究, 2025, 42(8): 1369-1378.
LI Wanzhi, DUAN Lijun, LIU Zhenlei, QI Menziyi, YU Di, YAO Haijun. Evolution characteristics of disaster-causing hazard of rainstorm disasters in the upper reaches of the Yellow River under the context of climate warming[J]. Arid Zone Research, 2025, 42(8): 1369-1378.
| [1] | 秦大河, 翟盘茂. 中国气候与生态环境演变: 2021(第一卷科学基础)[M]. 北京: 科学出版社, 2021. |
| [Qin Dahe, Zhai Panmao. Climate and Ecological Environment Evolution in China: 2021 (Volume I-Scientific Basis)[M]. Beijing: Science Press, 2021.] | |
| [2] | 张金良, 罗秋实, 王冰洁, 等. 城市极端暴雨洪涝灾害成因及对策研究进展[J]. 水资源保护, 2024, 40(1): 6-15. |
| [Zhang Jinliang, Luo Qiushi, Wang Bingjie, et al. Research progress on causes and countermeasures for extreme rainstorm-induced urban flood disasters[J]. Water Resources Protection, 2024, 40(1): 6-15.] | |
| [3] | IPCC. Climate Change 2021:The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the IPCC[R]. New York: Cambridge University Press, 2021. |
| [4] |
Wei C, Dong X H, Yu D, et al. Spatio-temporal variations of rainfall erosivity, correlation of climatic indices and influence on human activities in the Huaihe River Basin, China[J]. Catena, 2022, 217: 106486.
doi: 10.1016/j.catena.2022.106486 |
| [5] |
Matthews F, Panagos P, Verstraeten G. Simulating event-scale rainfall erosivity across European climatic regions[J]. Catena, 2022, 213: 106157.
doi: 10.1016/j.catena.2022.106157 |
| [6] |
罗志文, 王小军, 刘梦洋, 等. 基于地区线性矩法的陕西省极端降水时空特征[J]. 干旱区研究, 2021, 38(5): 1295-1305.
doi: 10.13866/j.azr.2021.05.11 |
| [Luo Zhiwen, Wang Xiaojun, Liu Mengyang, et al. Spatiotemporal characteristics of extreme precipitation in Shaanxi Province based on the regional L-moments method[J]. Arid Zone Reseach, 2021, 38(5): 1295-1305.] | |
| [7] |
Patricola C M, Wehner M F. Anthropogenic influences on majortropical cyclone events[J]. Nature, 2018, 563(7731): 339-346.
doi: 10.1038/s41586-018-0673-2 |
| [8] | 孙明生, 李国旺, 尹青, 等. “7·21”北京特大暴雨成因分析(Ⅰ): 天气特征、层结与水汽条件[J]. 暴雨灾害, 2013, 32(3): 210-217. |
| [Sun Mingsheng, Li Guowang, Yin Qing, et al. Analysis on the cause of a torrential rain occurring in Beijing on 21 July 2012(Ⅰ): Weather characteristics, stratification and water vapor conditions[J]. Torrential Rain and Disasters, 2013, 32(3): 210-217.] | |
| [9] | 林璇, 赵磊, 李得勤, 等. 华北“7∙20”特大暴雨多尺度特征分析[J]. 气象与环境学报, 2020, 36(3): 1-9. |
| [Lin Xuan, Zhao Lei, Li Deqin, et al. Multiscale characteristics of the “7∙20” heavy rainstorm event in North China[J]. Journal of Meteorology and Environment, 2020, 36(3): 1-9.] | |
| [10] | 崔慧慧, 李荣, 郜彦娜, 等. “7∙20”郑州极端特大暴雨降水细节特征和成灾过程研究[J]. 灾害学, 2023, 38(2): 114-120, 149. |
| [Cui Huihui, Li Rong, Gao Yanna, et al. Study on the precipitation details and disaster fromation process of “7∙20” extreme rainstorm in Zhengzhou[J]. Journal of Catastrophology, 2023, 38(2): 114-120, 149.] | |
| [11] |
Yao T D, Xue Y K, Chen D L, et al. Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 423-444.
doi: 10.1175/BAMS-D-17-0057.1 |
| [12] | IPCC. Climate Change 2014: Impacts, Adaptation and Vulnerability. Contribution of Working Group Ⅱ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, UK: Cambridge University Press, 2014. |
| [13] |
李乐乐, 钞锦龙, 赵德一, 等. 1957—2019年山西省暴雨时空分布特征与暴雨灾害风险评估[J]. 干旱区地理, 2023, 46(5): 689-699.
doi: 10.12118/j.issn.1000-6060.2022.425 |
|
[Li Lele, Chao Jinlong, Zhao Deyi, et al. Spatiotemporal distribution characteristics of rainstorm and risk assessment of rainstorm disasters in Shanxi Province from 1957 to 2019[J]. Arid Land Geography, 2023, 46(5): 689-699.]
doi: 10.12118/j.issn.1000-6060.2022.425 |
|
| [14] | 谢五三, 唐为安, 王胜. 安徽省暴雨致灾危险性评估[J]. 暴雨灾害, 2023, 42(3): 353-359. |
| [Xie Wusan, Tang Wei’an, Wang Sheng. Disaster-causing hazard assessment of rainstorms in Anhui Province[J]. Torrential Rain and Disasters, 2023, 42(3): 353-359.] | |
| [15] | 谢涛, 余亮, 周浩, 等. 基于极端梯度提升算法的重庆市暴雨灾害风险评估[J]. 气象科学, 2024, 44(6): 1140-1153. |
| [Xie Tao, Yu Liang, Zhou Hao, et al. Evaluation of dual-doppler radar wind retrieval methods based on observation system simulation experiment[J]. Journal of the Meteorological Sciences, 2024, 44(6): 1140-1153.] | |
| [16] | 杨若子, 邢佩, 杜吴鹏, 等. 面向气候韧性社区建设的北京东四社区暴雨内涝灾害风险研究[J]. 灾害学, 2024, 39(3): 24-29, 53. |
| [Yang Ruozi, Xing Pei, Du Wupeng, et al. Study on the risk of rainstorm and waterlogging disaster in Dongsi Community of Beijing facing the construction of climate resilient community[J]. Journal of Catastrophology, 2024, 39(3): 24-29, 53.] | |
| [17] | Ali A H, Abdulla A E, Hassa A D, et al. Hazard assessment and hazard mapping for Kuwait[J]. International Journal of Disaster Risk Science, 2023, 14: 143-161. |
| [18] | 王莉萍, 王秀荣, 王维国. 中国区域降水过程综合强度评估方法研究及应用[J]. 自然灾害学报, 2015, 24(2): 186-194. |
| [Wang Liping, Wang Xiurong, Wang Weiguo. Research and application of comprehensive intensity evaluation method for regional rainfall process in China[J]. Journal of Natural Disasters, 2015, 24(2): 186-194.] | |
| [19] | 邹燕, 叶殿秀, 林毅, 等. 福建区域性暴雨过程综合强度定量化评估方法[J]. 应用气象学报, 2014, 25(3): 360-364. |
| [Zou Yan, Ye Dianxiu, Lin Yi, et al. A quantitative method for assessment of regional heavy rainfall intensity[J]. Journal of Applied Meteorological Science, 2014, 25(3): 360-364.] | |
| [20] | 韩秀君, 孙晓巍, 李爽, 等. 辽宁暴雨致灾指标及灾害影响预评估[J]. 气象与环境学报, 2014, 30(6): 80-84. |
| [Han Xiujun, Sun Xiaowei, Li Shuang, et al. Disaster-causing index of rainstorm and preassessment of disaster effect in Liaoning Province[J]. Journal of Meteorology and Environment, 2014, 30(6): 80-84.] | |
| [21] | 赵小芳, 史瑞琴, 洪国平, 等. 暴雨洪涝受灾人口与雨涝危险性指数关系模型研究[J]. 暴雨灾害, 2023, 42(1): 79-87. |
| [Zhao Xiaofang, Shi Ruiqin, Hong Guoping, et al. The relationship model between flood-hit population and rainstorm waterlogging risk index[J]. Torrential Rain and Disasters, 2023, 42(1): 79-87.] | |
| [22] | 王芬, 洪国平, 赵小芳, 等. 暴雨过程致灾危险性评估方法研究—以孝感市“8·12”暴雨过程为例[J]. 暴雨灾害, 2023, 42(6): 724-730. |
| [Wang Fen, Hong Guoping, Zhao Xiaofang, et al. Research of rainstorm event disaster hazard assessment method: A case study of “8·12” rainstorm event in Xiaogan City[J]. Torrential Rain and Disaster, 2023, 42(6): 724-730.] | |
| [23] | 赵东亮, 兰措卓玛, 侯光良, 等. 青海省河湟谷地地质灾害易发性评价[J]. 地质力学学报, 2021, 27(1): 83-95. |
| [Zhao Dongliang, Lancuozhuoma, Hou Guangliang, et al. Assessment of geological disaster susceptibility in the Hehuang Valley of Qinghai Province[J]. Journal of Geomechanics, 2021, 27(1): 83-95.] | |
| [24] | 和海霞, 李博. 青海大通“8·18”山洪灾害特征及风险分析[J]. 自然资源遥感, 2024, 36(2): 135-141. |
| [He Haixia, Li Bo. Characteristics and risk analysis of the flash flood occurring in Datong of Qinghai Province on August 18, 2022[J]. Remote Sensing for Natural Resources, 2024, 36(2): 135-141.] | |
| [25] | 隋欣, 齐晔. 黄河流域青海片生态承载力动态评价[J]. 生态学杂志, 2007, 26(3): 406-412. |
| [Sui Xin, Qi Ye. Dynamic assessment of ecological carrying capacity of Yellow River Basin in Qinghai Province[J]. Chinese Journal of Ecology, 2007, 26(3): 406-412.] | |
| [26] | 青海省气象台. 气象灾害分级指标(DB63/T372—2018). 西宁: 青海省市场监督管理局, 2018. |
| [Qinghai Provincial Meteorological Observatory. Classification index of meteorological disasters(DB63/T372—2018). Xining: Qinghai Provincial Administration for Maket Regulation, 2018.] | |
| [27] | 青海省气候中心. 气象灾害风险评估技术规范暴雨(DB63/T 2186—2023). 西宁: 青海省市场监督管理局, 2023. |
| [Qinghai Climate Center. Technical specifications for meteorological disaster risk assessment-Rainstorm(DB63/T 2186—2023). Xining: Qinghai Provincial Administration for Maket Regulation, 2023.] | |
| [28] | 周波涛, 於琍. 管理气候灾害风险推进气候变化适应[J]. 中国减灾, 2012(3): 18-19. |
| [Zhou Botao, Yu Li. Managing climate disaster risks and promoting climate change adaptation[J]. China Journal of Disaster Reduction, 2012(3): 18-19.] | |
| [29] | Rupp D E, Abatzoglou J T, Hegewisch K C, et al. Evaluation of CMIP5 20th century climate simulations for the Pacific Northwest USA. Geophys[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(19): 10884-10906. |
| [30] | 顾荣直, 田心如, 禹梁玉, 等. 江苏寒潮天气过程风险预评估方法研究[J]. 气象学报, 2024, 82(2): 247-256. |
| [Gu Rongzhi, Tian Xinru, Yu Liangyu, et al. Research on risk preassessment method for cold wave weather process in Jiangsu Province[J]. Acta Meteorologica Sinica, 2024, 82(2): 247-256.] | |
| [31] | 魏凤英. 现代气候统计诊断与预测技术(第二版)[M]. 北京: 气象出版社, 2007: 14-20. |
| [Wei Fengying. Modern Techniques of Statistical Diagnosis and Prediction of Climate[M]. 2nd ed. Beijing: Meteorological Press, 2007: 14-20.] | |
| [32] | 杜军, 建军, 洪健昌, 等. 1961—2010年西藏季节性冻土对气候变化的响应[J]. 冰川冻土, 2012, 34(3): 512-521. |
| [Du Jun, Jian Jun, Hong Jianchang, et al. Response of seasonal frozen soil to climate change on Xizang region from 1961 to 2010[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 512-521.] | |
| [33] | 刘萱, 张文煜, 贾东于, 等. 河西走廊沙尘暴50a频率突变检测分析[J]. 中国沙漠, 2011, 31(6): 1579-1584. |
| [Liu Xuan, Zhang Wenyu, Jia Dongyu, et al. Research of abrupt changes of sandstorm frequency in Hexi Corridor in recent 50 years[J]. Journal of Desert Research, 2011, 31(6): 1579-1584.] | |
| [34] | 赵金鹏. 1961—2016年青藏高原极端气候事件变化特征研究[D]. 兰州: 兰州大学, 2019. |
| [Zhao Jinpeng. Study on Change Characteristics of Extreme Climate Events in the Qinghai Xizang Plateau from 1961 to 2016[D]. Lanzhou: Lanzhou University, 2019.] | |
| [35] | 丁一汇, 张莉. 青藏高原与中国其他地区气候突变时间的相互比较[J]. 大气科学, 2008, 32(4): 794-805. |
| [Ding Yihui, Zhang Li. Intercomparison of the time for climate abrupt change between the Tibetan Plateau and other regions in China[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4): 794-805.] | |
| [36] | 曹瑜, 游庆龙, 马茜蓉, 等. 青藏高原中东部夏季极端降水年代际变化特征[J]. 气象科学, 2019, 39(4): 437-445. |
| [Cao Yu, You Qinglong, Ma Qianrong, et al. Interdecadal characteristics of the summer extreme precipitation in the central and eastern Tibetan Plateau[J]. Journal of the Meteorological Sciences, 2019, 39(4): 437-445.] | |
| [37] |
谢欣汝, 游庆龙, 保云涛, 等. 基于多源数据的青藏高原夏季降水与水汽输送的联系[J]. 高原气象, 2018, 37(1): 78-92.
doi: 10.7522/j.issn.1000-0534.2017.00030 |
|
[Xie Xinru, You Qinglong, Bao Yuntao, et al. The connection between the precipitation and water vapor transport over Qinghai-Tibetan Plateau in summer based on the multiple datasets[J]. Plateau Meteorology, 2018, 37(1): 78-92.]
doi: 10.7522/j.issn.1000-0534.2017.00030 |
|
| [38] |
冯晓莉, 申红艳, 李万志, 等. 1961—2017年青藏高原暖湿季节极端降水时空变化特征[J]. 高原气象, 2020, 39(4): 694-705.
doi: 10.7522/j.issn.1000-0534.2020.00029 |
|
[Feng Xiaoli, Shen Hongyan, Li Wanzhi, et al. Spatiotemporal changes for extreme precipitation in wet season over the Qinghai-Tibetan Plateau and the surroundings during 1961-2017[J]. Plateau Meteorology, 2020, 39(4): 694-705.]
doi: 10.7522/j.issn.1000-0534.2020.00029 |
|
| [39] |
孟宪红, 陈昊, 李照国, 等. 三江源区气候变化及其环境影响研究综述[J]. 高原气象, 2020, 39(6): 1133-1143.
doi: 10.7522/j.issn.1000-0534.2019.00144 |
|
[Meng Xianhong, Chen Hao, Li Zhaoguo, et al. Review of climate change and its environmental influence on the Three-River Regions[J]. Plateau Meteorology, 2020, 39(6): 1133-1143.]
doi: 10.7522/j.issn.1000-0534.2019.00144 |
|
| [40] | 姚秀萍, 谢启玉, 黄逸飞. 中国三江源地区降水研究的进展与展望[J]. 大气科学学报, 2022, 45(5): 688-699. |
| [Yao Xiuping, Xie Qiyu, Huang Yifei. Advances and prospects on the study of precipitation in the Three-River-Source Region in China[J]. Transactions of Atmospheric Sciences, 2022, 45(5): 688-699.] | |
| [41] | 谢捷, 刘玮, 徐月顺, 等. 基于AHP-熵权法的西宁地区汛期暴雨灾害风险评估[J]. 自然灾害学报, 2022, 31(3): 60-74. |
| [Xie Jie, Liu Wei, Xu Yueshun, et al. Rainstorm disaster risk assessment in Xining area in rainy season based on the AHP weight method and entropy weight method[J]. Journal of Natural Disasters, 2022, 31(3): 60-74.] | |
| [42] |
李万志, 余迪, 冯晓莉, 等. 基于风险度的青海省暴雨洪涝灾害风险评估[J]. 冰川冻土, 2019, 41(3): 680-688.
doi: 10.7522/j.issn.1000-0240.2019.0033 |
|
[Li Wanzhi, Yu Di, Feng Xiaoli, et al. Risk assessment of rainstorm and flood disasters based on the hazard grades/indices in Qinghai Province[J]. Journal of Glaciology and Geocryology, 2019, 41(3): 680-688.]
doi: 10.7522/j.issn.1000-0240.2019.0033 |
|
| [43] | 周姝天, 翟国方, 施益军, 等. 城市自然灾害风险评估研究综述[J]. 灾害学, 2020, 35(4): 180-186. |
| [Zhou Shutian, Zhai Guofang, Shi Yijun, et al. A literature review of urban natural disaster risk assessment[J]. Journal of Catastrophology, 2020, 35(4): 180-186.] |
| [1] | 杜俊, 李广, 杜梦寅, 姚瑶, 马维伟, 袁建钰. 黄土高原不同土地利用方式对土壤N2O通量的影响[J]. 干旱区研究, 2025, 42(6): 1043-1054. |
| [2] | 杨晓玲, 周华, 陈静, 赵慧华, 吴雯. 河西走廊东部不同气候态气温变化及其对气候评价的影响[J]. 干旱区研究, 2024, 41(7): 1089-1098. |
| [3] | 张胜, 张涛, 段雯瑜, 徐利, 顾金洋, 张炜, 李思敏. 基于改进方法的承德地表水环境质量评价[J]. 干旱区研究, 2024, 41(1): 50-59. |
| [4] | 刘义花,李红梅,温婷婷,申红艳,韩忠全,朱宝文. 柴达木盆地夏季暴雨灾害风险区划及其影响[J]. 干旱区研究, 2021, 38(3): 757-763. |
| [5] | 保广裕,乜虹,戴升,燕振宁,杨春华,代青措. 黄河上游河源区不同量级降水对径流变化的影响[J]. 干旱区研究, 2021, 38(3): 704-713. |
| [6] | 朱薇, 周宏飞, 李兰海, 闫英杰. 哈萨克斯坦农业水土资源承载力评价及其影响因素识别[J]. 干旱区研究, 2020, 37(1): 254-263. |
| [7] | 衣怀峰, 师庆东, 吴友均, 赵福生, 张毓涛, 张新平, 常顺利, 张伟燕. 干旱区规模化植树CO2减排效果评价方法[J]. 干旱区研究, 2015, 32(2): 376-381. |
| [8] | 潘淑坤, 张明军, 汪宝龙, 马雪宁. 1960—2011年新疆初终霜日及无霜期的变化特征[J]. 干旱区研究, 2013, 30(4): 735-742. |
|
||