干旱区研究 ›› 2025, Vol. 42 ›› Issue (8): 1357-1368.doi: 10.13866/j.azr.2025.08.01 cstr: 32277.14.AZR.20250801
蒋安尧1,2(
), 陈睿山1,2,3, 郑利林1,2(
), 郭晓娜1,2, 孙南沙1,2, 李因帅1,2
收稿日期:2025-05-29
修回日期:2025-07-08
出版日期:2025-08-15
发布日期:2025-11-24
通讯作者:
郑利林. E-mail: zhenglilin17@mails.ucas.ac.cn作者简介:蒋安尧(2000-),男,硕士,主要从事荒漠化遥感与防治研究. E-mail: ayjiangsh@gmail.com
基金资助:
JIANG Anyao1,2(
), CHEN Ruishan1,2,3, ZHENG Lilin1,2(
), GUO Xiaona1,2, SUN Nansha1,2, LI Yinshuai1,2
Received:2025-05-29
Revised:2025-07-08
Published:2025-08-15
Online:2025-11-24
摘要: 为研究“三北”工程区极端降水变化及其影响,本文基于323个气象站的逐日降水数据和CMIP6多模式集合数据,分析了“三北”工程区极端降水的时空演变特征。结果显示:(1) “三北”工程区年均降水量呈现由东南向西北递减的格局。1960—2019年年均降水量在西部地区,特别是天山北麓和祁连山脉显著增加。(2) “三北”工程区东南部极端降水量大但呈下降趋势;西北部极端降水日数与极端降水占年降水量的比率显著上升。(3) 聚类分析识别出大兴安岭南麓、祁连山、天山-阿尔泰山为极端降水显著增强区,其极端降水量已占年降水量的1/3至1/2。未来气候预测显示山地区域的极端降水强度将持续增长。本研究揭示了“三北”工程区极端降水风险的空间集聚性,为“三北”工程分区防灾与生态管理提供科学支撑。
蒋安尧, 陈睿山, 郑利林, 郭晓娜, 孙南沙, 李因帅. “三北”工程区极端降水时空演变特征与影响[J]. 干旱区研究, 2025, 42(8): 1357-1368.
JIANG Anyao, CHEN Ruishan, ZHENG Lilin, GUO Xiaona, SUN Nansha, LI Yinshuai. Spatiotemporal evolution characteristics and impacts of extreme precipitation in the Three-North Shelterbelt Forest Program region[J]. Arid Zone Research, 2025, 42(8): 1357-1368.
表1
极端降水指数"
| 指数 | 缩写 | 定义 | 单位 |
|---|---|---|---|
| 极端降水量 | R95P | 全年日降水量>第95个百分位值的总降水 | mm |
| 极端降水频次 | R95D | 全年日降水量>第95个百分位值的总频次 | d |
| 极端降水强度 | R95I | 站点的R95P与R95D比值 | mm·d-1 |
| 极端降水贡献率 | R95C | R95P占全年降水总量的百分比 | % |
| 极端降水量倾向率 | R95PT | 站点的R95P变化情况 | mm·(10a)-1 |
| 极端降水频次倾向率 | R95DT | 站点的R95D变化情况 | d·(10a)-1 |
| 极端降水强度倾向率 | R95IT | 站点的R95I变化情况 | mm·d-1·(10a)-1 |
| 极端降水贡献率倾向率 | R95CT | 站点的R95C变化情况 | %·(10a)-1 |
表2
本研究与已有研究的极端降水指数对比"
| 指数 | “三北”工程区 | 中国北部[ | 青藏高原1[ | 青藏高原2[ | 新疆南部[ | 阴山北麓[ | 渭河流域[ |
|---|---|---|---|---|---|---|---|
| 时间范围 | 1961—2019年 | 1960—2017年 | 2005—2020年 | 1979—2020年 | 1961—2020年 | 1970—2020年 | 1960—2010年 |
| R95P/mm | 3.50~246.20 | 25.04~149.51 | 45.00~300.00 | 42.59 | 6.00~62.00 | 47.91~141.52 | 197.17 |
| R95D/d | 0.30~5.90 | 1.13~2.84 | 2.50~6.50 | 2.45 | 0.10~5.50 | 3.05~5.12 | 5.68 |
| R95I/(mm·d-1) | 11.60~76.50 | 12.48~44.89 | 10.00~45.00 | 14.22 | 3.50~15.50 | - | - |
| R95C/% | 11.10~28.60 | 15.96~49.29 | 28.50~39.00 | 12.18 | 5.00~55.00 | - | - |
| R95PT/[mm·(10a)-1] | -19.00~17.80 | -0.93~3.30 | 7.33 | - | 1.45 | 1.27 | -3.32 |
| R95DT/[mm·d-1·(10a)-1] | -0.40~1.10 | -0.01~0.15 | 0.15 | - | 0.23 | 0.00 | -2.27 |
| R95IT/[%·(10a)-1] | -2.40~2.30 | -0.27~0.90 | 0.83 | - | 0.01 | - | - |
| [11] | Yang L, Shi Z G, Liu R, et al. Evaluating the performance of global precipitation products for precipitation and extreme precipitation in arid and semiarid China[J]. International Journal of Applied Earth Observation and Geoinformation, 2024, 130: e103888. |
| [12] |
Xu L, Zheng C, Ma Y. Variations in precipitation extremes in the arid and semi-arid regions of China[J]. International Journal of Climatology, 2021, 41(3): 1542-1554.
doi: 10.1002/joc.v41.3 |
| [13] | 王澄海, 张晟宁, 李课臣, 等. 1961-2018年西北地区降水的变化特征[J]. 大气科学, 2021, 45(4): 713-724. |
| [Wang Chenghai, Zhang Shengning, Li Kechen, et al. Change characteristics of precipitation in Northwest China from 1961 to 2018[J]. Chinese Journal of Atmospheric Sciences, 2021, 45(4): 713-724.] | |
| [14] | Fu R, Wang C J, Ma D J, et al. Attribution of air temperature and precipitation to the future global drought events[J]. Environmental Research Communications, 2023, 5(6): e061005. |
| [15] |
García-García A, Cuesta-Valero F J, Miralles D G, et al. Soil heat extremes can outpace air temperature extremes[J]. Nature Climate Change, 2023, 13(11): 1237-1241.
doi: 10.1038/s41558-023-01812-3 |
| [16] |
McKinnon K A, Poppick A, Simpson I R. Hot extremes have become drier in the United States southwest[J]. Nature Climate Change, 2021, 11(7): 598-604.
doi: 10.1038/s41558-021-01076-9 |
| [17] | 吴亚彪, 高晓东, 何娜娜, 等. 黄土高原极端降水对人工林地深层土壤水分的补给效应[J]. 生态学报, 2024, 44(23): 10757-10769. |
| [Wu Yabiao, Gao Xiaodong, He Nana, et al. Recharge effect of extreme precipitation on deep soil water in artificial forest on the Loess Plateau[J]. Acta Ecologica Sinica, 2024, 44(23): 10757-10769.] | |
| [18] | 魏兰兰. 黄土高原浅层土壤水分对降水的响应机制研究——以董志塬为例[D]. 兰州: 兰州大学, 2022. |
| [Wei Lanlan. Response Mechanism of Shallow Soil Moisture to Precipitation in Loess Plateau: A Case Study of Dongzhi Tableland[D]. Lanzhou: Lanzhou University, 2022.] | |
| [19] | Li W, Guan J, Wang W, et al. Analysis of extreme precipitation variation characteristics in mountain grasslands of arid and semi-arid regions in China[J]. Frontiers in Environmental Science, 2024, 12: e1403490. |
| [1] | IPCC. Climate Change 2023:Synthesis Report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Geneva, Switzerland: IPCC, 2023. |
| [2] | 姜大膀, 王娜. IPCC AR6报告解读: 水循环变化[J]. 气候变化研究进展, 2021, 17(6): 699-704. |
| [Jiang Dabang, Wang Na. Water cycle changes: Interpretation of IPCC AR6[J]. Climate Change Research, 2021, 17(6): 699-704.] | |
| [3] |
Kotz M, Lange S, Wenz L, et al. Constraining the pattern and magnitude of projected extreme precipitation change in a multimodel ensemble[J]. Journal of Climate, 2024, 37(1): 97-111.
doi: 10.1175/JCLI-D-23-0492.1 |
| [4] |
Kirchmeier-Young M C, Zhang X. Human influence has intensified extreme precipitation in North America[J]. Proceedings of the National Academy of Sciences, 2020, 117(24): 13308-13313.
doi: 10.1073/pnas.1921628117 |
| [5] |
Ombadi M, Risser M D, Rhoades A M, et al. A warming-induced reduction in snow fraction amplifies rainfall extremes[J]. Nature, 2023, 619(7969): 305-310.
doi: 10.1038/s41586-023-06092-7 |
| [6] |
Liu W, Zhu J, Jia Q, et al. Carbon sequestration effects of shrublands in Three-North Shelterbelt Forest region, China[J]. Chinese Geographical Science, 2014, 24(4): 444-453.
doi: 10.1007/s11769-014-0698-x |
| [7] |
Qiu B, Chen G, Tang Z, et al. Assessing the Three-North Shelter Forest Program in China by a novel framework for characterizing vegetation changes[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 133: 75-88.
doi: 10.1016/j.isprsjprs.2017.10.003 |
| [8] |
Tan M, Li X. Does the Green Great Wall effectively decrease dust storm intensity in China: A study based on NOAA NDVI and weather station data[J]. Land Use Policy, 2015, 43: 42-47.
doi: 10.1016/j.landusepol.2014.10.017 |
| [9] | 陈婉. 《“三北”防护林体系建设40年综合评价报告》发布三大效益有机结合生态效应显著[J]. 环境经济, 2019(1): 34-37. |
| [Chen Wan. The “40-year comprehensive evaluation report on the construction of the Three North Shelterbelt System” was released, with three major benefits organically combined and significant ecological effects[J]. Environmental Economics, 2019(1): 34-37.] | |
| [10] |
Jian Y, Fu J, Li B, et al. Increased extreme hourly precipitation over China’s rice paddies from 1961 to 2012[J]. Scientific Reports, 2020, 10(1): 10609.
doi: 10.1038/s41598-020-67429-0 |
| [20] | 苏日罕, 郭恩亮, 王永芳, 等. 1982—2020年内蒙古地区极端气候变化及其对植被的影响[J]. 生态学报, 2023, 43(1): 419-431. |
|
[Su Rihan, Guo Enliang, Wang Yongfang, et al. Extreme climate changes in the Inner Mongolia and their impacts on vegetation dynamics during 1982-2020[J]. Acta Ecologica Sinica, 2023, 43(1): 419-431.]
doi: 10.1016/j.chnaes.2022.07.008 |
|
| [21] | 张善红, 李宏印, 屈妍, 等. 商洛地区植被NPP时空变化及其对极端气候的响应[J]. 价值工程, 2024, 43(1): 150-153. |
| [Zhang Shanhong, Li Hongyin, Qu Yan, et al. Spatial-temporal variation of NPP and its response to extreme climate in Shangluo[J]. Value Engineering, 2024, 43(1): 150-153.] | |
| [22] | 吉戴婧琪, 元媛, 韩剑桥. 中国极端降水事件的时空变化及趋势预测[J]. 中国农村水利水电, 2022, 64(10): 74-80. |
| [Jidaijingqi, Yuan Yuan, Han Jianqiao. Spatial-temporal changes and trend predictions of extreme precipitation events in China[J]. China Rural Water and Hydropower, 2022, 64(10): 74-80.] | |
| [23] |
马伟东, 刘峰贵, 周强, 等. 1961—2017年青藏高原极端降水特征分析[J]. 自然资源学报, 2020, 35(12): 3039-3050.
doi: 10.31497/zrzyxb.20201218 |
|
[Ma Weidong, Liu Fenggui, Zhou Qiang, et al. Characteristics of extreme precipitation over the Qinghai-Tibet Plateau from 1961 to 2017[J]. Journal of Natural Resources, 2020, 35(12): 3039-3050.]
doi: 10.31497/zrzyxb.20201218 |
|
| [24] | Ning G, Luo M, Zhang Q, et al. Understanding the mechanisms of summer extreme precipitation events in Xinjiang of arid Northwest China[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(15): e034111. |
| [25] |
郑孟林, 赵勇, 杨霞. 1961—2022年中国西北干旱区夏季降水变化特征[J]. 干旱区地理, 2025, 48(3): 367-379.
doi: 10.12118/j.issn.1000-6060.2024.207 |
|
[Zheng Menglin, Zhao Yong, Yang Xia. Variation characteristics of summer precipitation in the arid region of Northwest China from 1961 to 2022[J]. Arid Land Geography, 2025, 48(3): 367-379.]
doi: 10.12118/j.issn.1000-6060.2024.207 |
|
| [26] | 刘盼. 黄土高原植被覆盖和总初级生产力变化特征及其对极端气候的响应[D]. 杨凌: 西北农林科技大学, 2022. |
| [Liu Pan. Variation Characteristics of NDVI and GPP and Their Response to Extreme Climate in the Loess Plateau[D]. Yangling: Northwest A & F University, 2022.] | |
| [27] |
程瑛, 宋兴宇, 付正旭, 等近60 a黄河上游流域不同强度降水及大气湿润指数变化的新特征[J]. 干旱区地理, 2024, 47(8): 1327-1337.
doi: 10.12118/j.issn.1000-6060.2023.638 |
|
[Cheng Ying, Song Xingyu, Fu Zhengxu, et al. New characteristics of various intensity precipitation and atmospheric humidity index in the upper reaches of the Yellow River in recent 60 years[J]. Arid Land Geography, 2024, 47(8): 1327-1337.]
doi: 10.12118/j.issn.1000-6060.2023.638 |
|
| [28] |
周雪如, 李育. 千百年尺度祁连山地区干湿变化对暖期的响应[J]. 地理学报, 2022, 77(5): 1138-1152.
doi: 10.11821/dlxb202205007 |
|
[Zhou Xueru, Li Yu. Response of dry-wet change to millennial and centennial warm periods in the Qilian Mountains[J]. Acta Geographica Sinica, 2022, 77(5): 1138-1152.]
doi: 10.11821/dlxb202205007 |
|
| [29] |
赵进平, 史久新, 王召民, 等. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985-995.
doi: 10.11867/ j.issn.1001-8166.2015.09.0985 |
|
[Zhao Jinping, Shi Jiuxin, Wang Zhaomin, et al. Arctic amplification produced by sea ice retreat and its global climate effects[J]. Advances in Earth Science, 2015, 30(9): 985-995.]
doi: 10.11867/ j.issn.1001-8166.2015.09.0985 |
|
| [30] |
Wang C, Ren B, Yang C, et al. Change of the CP ENSO’s role in the occurrence frequency of Arctic daily warming events triggered by Atlantic storms[J]. npj Climate and Atmospheric Science, 2023, 6: 83.
doi: 10.1038/s41612-023-00399-y |
| [31] | Giesse C, Notz D, Baehr J. The shifting distribution of Arctic daily temperatures under global warming[J]. Earth’s Future, 2024, 12(11): e004961. |
| [32] |
Abell J T, Winckler G, Anderson R F, et al. Poleward and weakened westerlies during Pliocene warmth[J]. Nature, 2021, 589(7840): 70-75.
doi: 10.1038/s41586-020-03062-1 |
| [33] |
Burke K D, Williams J W, Chandler M A, et al. Pliocene and Eocene provide best analogs for near-future climates[J]. Proceedings of the National Academy of Sciences, 2018, 115(52): 13288-13293.
doi: 10.1073/pnas.1809600115 |
| [34] |
Lapointe F, Karmalkar A V, Bradley R S, et al. Climate extremes in Svalbard over the last two millennia are linked to atmospheric blocking[J]. Nature Communications, 2024, 15(1): 4432.
doi: 10.1038/s41467-024-48603-8 pmid: 38830858 |
| [35] |
Couto F T, Kartsios S, Lacroix M, et al. A quick look at the atmospheric circulation leading to extreme weather phenomena on a continental scale[J]. Atmosphere, 2024, 15(10): 1205.
doi: 10.3390/atmos15101205 |
| [36] | Yan X, Wang L, Gerber E P, et al. Traffic bottlenecks: Predicting atmospheric blocking with a diminishing flow capacity[J]. Geophysical Research Letters, 2024, 51(19): e111035. |
| [37] | 姜晓飞, 熊秋芬, 周雅蔓, 等. 新疆冬春季强降水过程的水汽来源及输送特征分析[J]. 海洋气象学报, 2021, 41(3): 52-59. |
| [Jiang Xiaofei, Xiong Qiufen, Zhou Yaman, et al. Analysis of moisture source and transport pathway of two intense precipitation in Xinjiang[J]. Journal of Marine Meteorology, 2021, 41(3): 52-59.] | |
| [38] | 齐铎, 王承伟, 白雪梅, 等. “23·8”黑龙江极端强降水过程特征与成因[J]. 应用气象学报, 2024, 35(3): 257-271. |
| [Qi Duo, Wang Chengwei, Bai Xuemei, et al. Characteristics and causes of extreme heavy rainfall in Heilongjiang Province during August 2023[J]. Journal of Applied Meteorological Science, 2024, 35(3): 257-271.] | |
| [39] |
Yang Z, Huang W, He X, et al. Synoptic conditions and moisture sources for extreme snowfall events over east China[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(2): 601-623.
doi: 10.1029/2018JD029280 |
| [40] |
Papritz L. Arctic lower-tropospheric warm and cold extremes: Horizontal and vertical transport, diabatic processes, and linkage to synoptic circulation features[J]. Journal of Climate, 2020, 33(3): 993-1016.
doi: 10.1175/JCLI-D-19-0638.1 |
| [41] |
Lin P F, He Z B, Du J, et al. Recent changes in daily climate extremes in an arid mountain region: A case study in northwestern China’s Qilian Mountains[J]. Scientific Reports, 2017, 7(1-4): 2245.
doi: 10.1038/s41598-016-0028-x |
| [42] |
魏娟娟, 万瑜, 潘宁, 等. 伊犁河谷春季极端暴雨水汽特征与不稳定机制分析[J]. 干旱气象, 2024, 42(3): 395-404.
doi: 10.11755/j.issn.1006-7639(2024)-03-0395 |
| [Wei Juanjuan, Wan Yu, Pan Ning, et al. Analysis of water vapor characteristics and unstable mechanism of extreme rainstorm in spring in Yili River Valley[J]. Journal of Arid Meteorology, 2024, 42(3): 395-404.] | |
| [43] |
贾文雄, 张禹舜, 李宗省. 近50 年来祁连山及河西走廊地区极端降水的时空变化研究[J]. 地理科学, 2014, 34(8): 1002-1009.
doi: 10.13249/j.cnki.sgs.2014.08.1002 |
|
[Jia Wenxiong, Zhang Yushun, Li Zongxing. Spatial and temporal change of precipitation extremes in Qilian Mountains and Hexi Corridor in recent fifty years[J]. Scientia Geographica Sinica, 2014, 34(8): 1002-1009.]
doi: 10.13249/j.cnki.sgs.2014.08.1002 |
|
| [44] | 宋琦明. 基于卫星遥感的祁连山及甘肃中部地区云特征分析[D]. 兰州: 兰州大学, 2019. |
| [Song Qiming, Study on Cloud Features Over Qilian Mountains and Central Gansu Based on Satellite Remote Sensing[D]. Lanzhou: Lanzhou University, 2019.] | |
| [45] | 杨晨辉, 王艳君, 苏布达, 等. SSP“双碳”路径下赣江流域径流变化趋势[J]. 气候变化研究进展, 2022, 18(2): 177-187. |
| [Yang Chenhui, Wang Yanjun, Su Buda, et al. Runoff variation trend of Ganjiang River Basin under SSP “Double Carbon” path[J]. Climate Change Research, 2022, 18(2): 177-187.] | |
| [46] |
Jin C, He Q, Huang Q. Extreme summer precipitation characteristics and associated water vapor transport in southern Xinjiang[J]. Water, 2023, 15(13): 2361.
doi: 10.3390/w15132361 |
| [47] | Sun H, Gao Q. Analysis and evaluation of extreme precipitation events over the Qinghai-Xizang Plateau[J]. Open Access Library Journal, 2024, 11(7): 1-15. |
| [48] |
Peng Y, Zhao X, Wu D, et al. Spatiotemporal variability in extreme precipitation in China from observations and projections[J]. Water, 2018, 10(8): 1089.
doi: 10.3390/w10081089 |
| [49] |
Liu S, Huang S, Huang Q, et al. Identification of the non-stationarity of extreme precipitation events and correlations with large-scale ocean-atmospheric circulation patterns: A case study in the Wei River Basin, China[J]. Journal of Hydrology, 2017, 548: 184-195.
doi: 10.1016/j.jhydrol.2017.03.012 |
| [50] | 丁致远, 哈瑶, 钟中. 青藏高原夏季极端降水的分型及其前兆信号[J]. 中国科学: 地球科学, 2024, 54(5): 1653-1666. |
| [Ding Zhiyuan, Ha Yao, Zhong Zhong. Summer extreme precipitation patterns and synoptic-scale circulation precursors over the Tibetan Plateau[J]. Science China (Terrae), 2024, 67(5): 1625-1638.] | |
| [51] | 孟泽坤, 王彬, Daniel Moriasi. 次降雨时空分布对流域产流产沙的影响[J]. 中国水土保持科学, 2023, 21(4): 69-78. |
| [Meng Zekun, Wang Bin, Daniel Moriasi. Effects of the spatio-temporal pattern of single storm on the runoff and sediment yield at watershed scale[J]. Science of Soil and Water Conservation, 2023, 21(4): 69-78.] | |
| [52] |
Ben Zaied M, Jomaa S, Ouessar M. Soil erosion estimates in arid region: A case study of the Koutine catchment, southeastern Tunisia[J]. Applied Sciences, 2021, 11(15): 6763.
doi: 10.3390/app11156763 |
| [53] |
Li F, Zhao W, Liu H. The response of aboveground net primary productivity of desert vegetation to rainfall pulse in the temperate desert region of Northwest China[J]. Plos One, 2013, 8(9): e73003.
doi: 10.1371/journal.pone.0073003 |
| [54] |
Zhao Y J, Wang D F, Duan H L. Effects of drought and flooding on growth and physiology of Cinnamomum camphora seedlings[J]. Forests, 2023, 14(7):1343.
doi: 10.3390/f14071343 |
| [55] | Yi K, Zhang J, Lei H, et al. Response of ecological condition in ecologically fragile areas to disturbance from extreme precipitation event: An empirical analysis from the Loess Plateau[J]. Journal of Cleaner Production, 2025, 512: e145701. |
| [56] | Yin C, Bai C, Zhu Y, et al. Future soil erosion risk in China: Differences in erosion driven by general and extreme precipitation under climate change[J]. Earth’s Future, 2025, 13(3): e005390. |
| [57] | Zhang S, Zhang K. Assessing the impact of extreme rainfall and slope surface conditions on runoff and erosion based on a big database in southwest China’s karst region[J]. Journal of Hydrology, 2025, 659: e133273. |
| [58] |
张彬, 朱建军, 刘华民, 等. 极端降水和极端干旱事件对草原生态系统的影响[J]. 植物生态学报, 2014, 38(9): 1008-1018.
doi: 10.3724/SP.J.1258.2014.00095 |
|
[Zhang Bin, Zhu Jianjun, Liu Huamin, et al. Effects of extreme rainfall and drought events on grassland ecosystems[J]. Chinese Journal of Plant Ecology, 2014, 38(9): 1008-1018.]
doi: 10.3724/SP.J.1258.2014.00095 |
|
| [59] |
Zang Y, Ma J, Zhou X, et al. Effects of extreme drought and extreme precipitation on aboveground productivity of ephemeral plants across different slope positions along sand dunes[J]. Chinese Journal of Plant Ecology, 2022, 46(12): 1537-1550.
doi: 10.17521/cjpe.2021.0473 |
| [60] |
An H, Song X, Wang Z, et al. Investigating the long-term response of plateau vegetation productivity to extreme climate: Insights from a case study in Qinghai Province, China[J]. International Journal of Biometeorology, 2024, 68(2): 333-349.
doi: 10.1007/s00484-023-02593-2 pmid: 38052751 |
| [61] |
Zeppel M J B, Wilks J V, Lewis J D. Impacts of extreme precipitation and seasonal changes in precipitation on plants[J]. Biogeosciences, 2014, 11(11): 3083-3093.
doi: 10.5194/bg-11-3083-2014 |
| [62] | 许阳光, 郭文召, 王文龙, 等. 极端降雨下黄土高原草被沟坡浅层滑坡特征及其对产流产沙的影响[J]. 生态学报, 2022, 42(19): 7898-7909. |
| [Xun Yangguang, Guo Wenzhao, Wang Wenlong, et al. Characteristics of shallow landslides under extreme rainfall and their effects on runoff and sediment on the Loess Plateau[J]. Acta Ecologica Sinica, 2022, 42(19): 7898-7909.] | |
| [63] | Xu Y, Luo L, Guo W, et al. Revegetation changes main erosion type on the gully-slope on the Chinese Loess Plateau under cxtreme rainfall: Reducing gully erosion and promoting shallow landslides[J]. Water Resources Research, 2024, 60(3): e036307. |
| [1] | 商淑静, 刘丹辉, 周轶昕, 吴家驹, 陆婷, 李文军. 气候变化背景下软紫草在中国的潜在适生区预测[J]. 干旱区研究, 2025, 42(9): 1628-1639. |
| [2] | 杨晓玲, 陈静, 赵慧华, 马中华, 吴雯. 河西走廊东部极端降水时空变化特征[J]. 干旱区研究, 2025, 42(8): 1394-1403. |
| [3] | 严应存, 孙树娇, 余迪, 高贵生. 气候变化对柴达木盆地植被绿度的影响及趋势预估[J]. 干旱区研究, 2025, 42(7): 1257-1268. |
| [4] | 邵俊杰, 陶通炼, 李志忠. 古尔班通古特沙漠南缘沉积物粒度和微量元素记录晚全新世气候变化[J]. 干旱区研究, 2025, 42(5): 788-799. |
| [5] | 罗磊, 李曦光, 李萧婷, 王磊, 王蕾. 气候变化下沙棘在新疆潜在分布格局的变化[J]. 干旱区研究, 2025, 42(3): 511-522. |
| [6] | 赵艳芬, 王春成, 潘伯荣. 气候变化下脓疮草在中国的适宜分布区预测[J]. 干旱区研究, 2025, 42(10): 1851-1859. |
| [7] | 岳胜如, 胡雪菲, 侯晓华, 孟福军. 基于CMIP6模式的塔里木河流域棉花生产评估[J]. 干旱区研究, 2025, 42(10): 1925-1938. |
| [8] | 邹彬, 邹珊, 杨余辉. 1990—2023年新疆地表水体面积动态变化及其驱动因素[J]. 干旱区研究, 2025, 42(1): 40-50. |
| [9] | 吕壮壮, 乔庆庆, 董孙艺, 汪冬. 中中新世气候适宜期全球变暖背景下亚洲内陆干旱区古气候演化特征及驱动机制[J]. 干旱区研究, 2024, 41(8): 1309-1322. |
| [10] | 周杰, 王旭虎, 杜维波, 周晓雷, 杨洁, 张晓玮. 气候变化背景下的天山云杉潜在分布区预测[J]. 干旱区研究, 2024, 41(7): 1167-1176. |
| [11] | 梁双河, 牛最荣, 贾玲. 祖厉河干流近65 a径流变化及归因分析[J]. 干旱区研究, 2024, 41(6): 928-939. |
| [12] | 唐可欣, 郭建斌, 何亮, 陈林, 万龙. 中国旱区GPP时空演变特征及影响因素研究[J]. 干旱区研究, 2024, 41(6): 964-973. |
| [13] | 张嘉琪, 刘招, 韩忠青, 王丽霞, 张晋霞, 岳甲寅, 管子隆. 气候变化下泾河流域蓝绿水变化趋势及预测[J]. 干旱区研究, 2024, 41(12): 2045-2055. |
| [14] | 张倩, 曹广超, 张乐乐, 赵美亮. 祁连山南坡植被绿度时空变化及其对气候变化和人类活动的响应[J]. 干旱区研究, 2024, 41(12): 2143-2153. |
| [15] | 胡广录, 樊亚仑, 陶虎, 李昊辰, 杨鹏华. 石羊河下游蔡旗站径流变化趋势及影响因素[J]. 干旱区研究, 2024, 41(11): 1842-1852. |
|
||