干旱区研究 ›› 2023, Vol. 40 ›› Issue (6): 958-970.doi: 10.13866/j.azr.2023.06.11 cstr: 32277.14.j.azr.2023.06.11
乔静娟1,2(),左小安1,3(),岳平1,3,王国林4,王景圆4,王泽宙4
收稿日期:
2022-10-01
修回日期:
2023-03-06
出版日期:
2023-06-15
发布日期:
2023-06-21
作者简介:
乔静娟(1996-),女,博士研究生,主要从事荒漠草原植物群落物种组成、功能性状和构建机制的研究.E-mail: 基金资助:
QIAO Jingjuan1,2(),ZUO Xiao’an1,3(),YUE Ping1,3,WANG Guolin4,WANG Jingyuan4,WANG Zezhou4
Received:
2022-10-01
Revised:
2023-03-06
Published:
2023-06-15
Online:
2023-06-21
摘要:
运用混合线性模型、主成分分析和零模型方法,以乌拉特荒漠草原草本群落为研究对象,研究了短期养分添加(NPKμ,各10 g·m-2)和干扰对植物群落物种多样性、功能性状、土壤理化性质和群落构建过程的影响。结果表明:(1) 干扰和交互处理显著降低物种丰富度和β多样性,短期养分添加显著降低土壤pH,增加土壤电导率。(2) 干扰和养分添加处理下,优势物种沙生针茅(Stipa glareosa)、骆驼蓬(Peganum harmala)、猪毛菜(Salsola collina)和蒙古虫实(Corispermum mongolicum)的6个性状以及群落功能性状加权均值(Community-weighted mean, CWM)发生显著变化,揭示了干扰和养分添加促使群落优势种从保守型策略向获取型策略转变。(3) 两种零模型结果表明,对照下的草本群落构建趋向于随机性过程,干扰和交互处理下的群落构建趋向于确定性过程,养分添加处理下的群落构建趋向于较弱的确定性过程。荒漠草原草本植物群落通过优势物种和关键功能性状的改变来响应和适应养分添加与干扰。
乔静娟, 左小安, 岳平, 王国林, 王景圆, 王泽宙. 养分添加与干扰对荒漠草原群落组成及构建的影响[J]. 干旱区研究, 2023, 40(6): 958-970.
QIAO Jingjuan, ZUO Xiao’an, YUE Ping, WANG Guolin, WANG Jingyuan, WANG Zezhou. Nutrient addition and disturbance effects on the community composition and assembly in a desert steppe[J]. Arid Zone Research, 2023, 40(6): 958-970.
表1
荒漠草原主要优势物种生活型"
物种 | 生活型 |
---|---|
沙生针茅 (Stipa glareosa) | 多年生 |
猪毛菜 (Salsola collina) | 一年生 |
蒙古虫实 (Corispermum mongolicum) | 一年生 |
骆驼蓬 (Peganum harmala) | 多年生 |
鸦葱 (Scorzonera austriaca) | 多年生 |
兔唇花 (Lagochilus ilicifolium) | 多年生 |
碱韭 (Allium polyrhizum) | 多年生 |
蒙古韭 (Allium mongolicum) | 多年生 |
冷蒿 (Artemisia frigida) | 多年生 |
糙隐子草 (Cleistogenes squarrosa) | 多年生 |
天门冬 (Asparagus cochinchinensis) | 多年生 |
银灰旋花 (Convolvulus ammannii) | 多年生 |
砂蓝刺头 (Echinops gmelini) | 多年生 |
冰草 (Agropyron cristatum) | 多年生 |
表2
不同处理下土壤性质的变化"
指标 | 处理 | |||||
---|---|---|---|---|---|---|
对照 | 干扰 | 养分添加 | 交互处理 | F 值 | P 值 | |
pH | 9.44±0.02A | 9.43±0.02A | 9.10±0.07B | 9.09±0.07B | 10.36 | P < 0.001 |
SWC/% | 0.68±0.28 | 1.34±0.51 | 0.89±0.17 | 0.84±0.29 | 0.56 | P > 0.05 |
EC/(μS·cm-1) | 76.62±5.84B | 79.32±4.64B | 132.17±2.28A | 134.10±7.57A | 27.53 | P < 0.001 |
TNC/(g·kg-1) | 0.32±0.02 | 0.31±0.01 | 0.36±0.03 | 0.35±0.02 | 0.92 | P > 0.05 |
TCC/(g·kg-1) | 4.52±0.14 | 5.58±0.52 | 4.98±0.54 | 5.22±0.28 | 0.96 | P > 0.05 |
[1] | 屈莹波, 赵媛媛, 丁国栋, 等. 气候变化和人类活动对锡林郭勒草原植被覆盖度的影响[J]. 干旱区研究, 2021, 38(3): 802-811. |
[Qu Yingbo, Zhao Yuanyuan, Ding Guodong, et al. Effects of climate and human activities on vegetation cover changes in Xilingol steppe[J]. Arid Zone Research, 2021, 38(3): 802-811.] | |
[2] |
Liu X, Duan L, Mo J, et al. Nitrogen deposition and its ecological impact in China: An overview[J]. Environmental Pollution, 2011, 159(10): 2251-2264.
doi: 10.1016/j.envpol.2010.08.002 pmid: 20828899 |
[3] |
Wang X, Song N P, Yang X G, et al. Inferring community assembly mechanisms from functional and phylogenetic diversity: The relative contribution of environmental filtering decreases along a sand desertification gradient in a desert steppe community[J]. Land Degradation & Development, 2021, 32(7): 2360-2370.
doi: 10.1002/ldr.v32.7 |
[4] |
Liu W, Liu L, Yang X, et al. Long-term nitrogen input alters plant and soil bacterial, but not fungal beta diversity in a semiarid grassland[J]. Global Change Biology, 2021, 27(16): 3939-3950.
doi: 10.1111/gcb.v27.16 |
[5] | 庄伟伟, 侯宝林. 古尔班通古特沙漠短命植物的氮素吸收策略[J]. 干旱区研究, 2021, 38(5): 1393-1400. |
[Zhuang Weiwei, Hou Baolin. Nitrogen uptake strategies of short-lived plants in the Gurbantunggut Desert[J]. Arid Zone Research, 2021, 38(5): 1393-1400.] | |
[6] |
Fox John F. Intermediate-disturbance hypothesis[J]. Science, 1979, 204(4399): 1344-1345.
pmid: 17813173 |
[7] |
Harpole W S, Sullivan L L, Lind E M, et al. Addition of multiple limiting resources reduces grassland diversity[J]. Nature, 2016, 537(7618): 93-6.
doi: 10.1038/nature19324 |
[8] |
Barry K E, Mommer L, Van Ruijven J, et al. The future of complementarity: disentangling causes from consequences[J]. Trends in Ecology & Evolution, 2019, 34(2): 167-180.
doi: 10.1016/j.tree.2018.10.013 |
[9] |
Anderson S C, Elsen P R, Hughes B B, et al. Trends in ecology and conservation over eight decades[J]. Frontiers in Ecology and the Environment, 2021, 19(5): 274-282.
doi: 10.1002/fee.v19.5 |
[10] |
Nogueira C, Nunes A, Bugalho M N, et al. Nutrient addition and drought interact to change the structure and decrease the functional diversity of a Mediterranean grassland[J]. Frontiers in Ecology and Evolution, 2018, 6: 155.
doi: 10.3389/fevo.2018.00155 |
[11] | 张晶, 左小安, 吕朋, 等. 科尔沁沙地典型草地植物功能性状及其相互关系[J]. 干旱区研究, 2018, 35(1): 137-143. |
[Zhang Jing, Zuo Xiaoan, Lv Peng, et al. Plant functional traits and interrelationships of dominant species on typical grassland in Horqin Sandy Land, China[J]. Arid Zone Research, 2018, 35(1): 137-143.] | |
[12] |
Naeem S, Li S. Biodiversity enhances ecosystem reliability[J]. Nature, 1997, 390(6659): 507-509.
doi: 10.1038/37348 |
[13] |
Kunstler G, Falster D, Coomes D A, et al. Plant functional traits have globally consistent effects on competition[J]. Nature, 2016, 529(7585): 204-207.
doi: 10.1038/nature16476 |
[14] |
Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985): 821-827.
doi: 10.1038/nature02403 |
[15] |
陈莹婷, 许振柱. 植物叶经济谱的研究进展[J]. 植物生态学报, 2014, 38(10): 1135-1153.
doi: 10.3724/SP.J.1258.2014.00108 |
[Chen Yingting, Xu Zhenzhu. Review on research of leaf economics spectrum[J]. Chinese Journal of Plant Ecology, 2014, 38(10): 1135-1153.]
doi: 10.3724/SP.J.1258.2014.00108 |
|
[16] |
Gorné L D, Díaz S, Minden V, et al. The acquisitive-conservative axis of leaf trait variation emerges even in homogeneous environments[J]. Annals of Botany, 2022, 129(6): 709-722.
doi: 10.1093/aob/mcaa198 |
[17] | Daou L, Garnier É, Shipley B. Quantifying the relationship linking the community-weighted means of plant traits and soil fertility[J]. Ecology, 2021, 102(9): e03454. |
[18] | Rosenzweig M L. Species Diversity in Space and Time[M]. Cambridge: Cambridge University Press, 1995. |
[19] | 蒋腊梅. 荒漠生态系统植物物种共存机制研究[D]. 乌鲁木齐: 新疆大学, 2018. |
[Jiang Lamei. The Study on the Coexistence Mechanism of Plant Species in Desert Ecosystem[D]. Urumqi: Xinjiang University, 2018.] | |
[20] | Czortek P, Orczewska A, Dyderski M K. Niche differentiation, competition or habitat filtering? Mechanisms explaining co-occurrence of plant species on wet meadows of high conservation value[J]. Journal of Vegetation Science, 2021, 32(1): e12983. |
[21] |
Hubbell S P, Ahumada J A, Condit R, et al. Local neighborhood effects on long-term survival of individual trees in a neotropical forest[J]. Ecological Research, 2001, 16(5): 859-875.
doi: 10.1046/j.1440-1703.2001.00445.x |
[22] |
Chase Jonathan M. Stochastic community assembly causes higher biodiversity in more productive environments[J]. Science, 2010, 328(5984): 1388-1391.
doi: 10.1126/science.1187820 pmid: 20508088 |
[23] |
Ning D, Yuan M, Wu L, et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming[J]. Nature Communications, 2020, 11(1): 1-12.
doi: 10.1038/s41467-019-13993-7 |
[24] |
Ma Q, Liu X, Li Y, et al. Nitrogen deposition magnifies the sensitivity of desert steppe plant communities to large changes in precipitation[J]. Journal of Ecology, 2020, 108(2): 598-610.
doi: 10.1111/jec.v108.2 |
[25] |
Guo N, Xie M, Fang Z, et al. Divergent responses of plant biomass and diversity to short-term nitrogen and phosphorus addition in three types of steppe in Inner Mongolia, China[J]. Ecological Processes, 2022, 11(1): 1-12.
doi: 10.1186/s13717-021-00352-y |
[26] | 马秀梅. 内蒙古推进北方防沙带生态保护和修复任重道远[J]. 内蒙古林业, 2022(6): 25-26. |
[Ma Xiumei. Inner Mongolia has a long way to go to promote the ecological protection and restoration of the northern sand control belt[J]. Inner Mongolia Forestry, 2022(6): 25-26.] | |
[27] |
Liu L, Zhao X, Chang X, et al. Impact of precipitation fluctuation on desert-grassland ANPP[J]. Sustainability, 2016, 8(12): 1245.
doi: 10.3390/su8121245 |
[28] |
Pérez-ramos I M, Matías L, Gómez-aparicio L, et al. Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions[J]. Nature communications, 2019, 10(1): 1-11.
doi: 10.1038/s41467-018-07882-8 |
[29] |
Reynolds S. The gravimetric method of soil moisture determination Part IA study of equipment, and methodological problems[J]. Journal of Hydrology, 1970, 11(3): 258-273.
doi: 10.1016/0022-1694(70)90066-1 |
[30] |
Ning D, Deng Y, Tiedje J M, et al. A general framework for quantitatively assessing ecological stochasticity[J]. Proceedings of the National Academy of Sciences, 2019, 116(34): 16892-16898.
doi: 10.1073/pnas.1904623116 |
[31] | Chase J M, Kraft N J, Smith K G, et al. Using null models to disentangle variation in community dissimilarity from variation in α-diversity[J]. Ecosphere, 2011, 2(2): 1-11. |
[32] | 张璞进, 黄建辉, 木兰, 等. 氮水添加对放牧背景下荒漠草原生产力的影响研究[J]. 生态学报, 2022, 42(13): 1-13. |
[Zhang Pujin, Huang Jianhui, Mu Lan, et al. Influence of nitrogen and water addition on the primary productivity of Stipa breviflora in a desert steppe under different grazing intensities[J]. Acta Ecologica Sinica, 2022, 42(13): 1-13.] | |
[33] |
李捷, 陈莹莹, 乔福云, 等. 高原鼠兔干扰对高寒草甸β多样性的影响[J]. 植物生态学报, 2021, 45(5): 476-486.
doi: 10.17521/cjpe.2020.0274 |
[Li Jie, Chen Yingying, Qiao Fuyun, et al. Effects of disturbance by plateau pika on β diversity of an alpine meadow[J]. Chinese Journal of Plant Ecology, 2021, 45(5): 476-486.]
doi: 10.17521/cjpe.2020.0274 |
|
[34] | 宋珊珊. 长期氮、磷添加对高寒草地植物群落多样性和生物量稳定性的影响[D]. 兰州: 兰州大学, 2021. |
[Song Shanshan. Effects of Long-term Nitrogen and Phosphorus Addition on Plant Community Diversity and Biomass Stability in Alpine Grassland[D]. Lanzhou: Lanzhou University, 2021.] | |
[35] |
赵鹏, 屈建军, 韩庆杰, 等. 敦煌绿洲边缘植物群落与土壤养分互馈关系[J]. 中国沙漠, 2018, 38(4): 791-799.
doi: 10.7522/j.issn.1000-694X.2017.00045 |
[Zhao Peng, Qu Jianjun, Han Qingjie, et al. Mutual feedback relationship between vegetation communities and soil nutrient in the edge of Dunhuang oasis[J]. Journal of Desert Research, 2018, 38(4): 791-799.]
doi: 10.7522/j.issn.1000-694X.2017.00045 |
|
[36] | 李晓辉. 沙质草地植物群落特征和土壤质量对氮磷养分添加的响应[D]. 兰州: 兰州交通大学, 2021. |
[Li Xiaohui. Responses of Plant Community Characteristics and Soil Quality to Nitrogen and Phosphorus Nutrient Addition in Sandy Grassland[D]. Lanzhou: Lanzhou Jiaotong University, 2021.] | |
[37] |
Tian D, Niu S. A global analysis of soil acidification caused by nitrogen addition[J]. Environmental Research Letters, 2015, 10(2): 024019.
doi: 10.1088/1748-9326/10/2/024019 |
[38] |
田地, 严正兵, 方精云. 植物生态化学计量特征及其主要假说[J]. 植物生态学报, 2021, 45(7): 682-713.
doi: 10.17521/cjpe.2020.0331 |
[Tian Di, Yan Zhengbing, Fang Jingyun, Review on characteristics and main hypotheses of plant ecological stoichiometry[J]. Chinese Journal of Plant Ecology, 2021, 45(7): 682-713.]
doi: 10.17521/cjpe.2020.0331 |
|
[39] | 张晶, 左小安. 沙质草地植物功能性状对放牧、增水、氮添加及其耦合效应的响应机制[J]. 生态学报, 2021, 41(18): 7153-7167. |
[Zhang Jing, Zuo Xiao’an. Effects of grazing, increase water, nitrogen addition and their coupling on plant functional traits in the sandy grassland[J]. Acta Ecologica Sinica, 2021, 41(18): 7153-7167.] | |
[40] |
Grime J. Benefits of plant diversity to ecosystems: immediate, filter and founder effects[J]. Journal of Ecology, 1998, 86(6): 902-910.
doi: 10.1046/j.1365-2745.1998.00306.x |
[41] |
Mori A S, Isbell F, Seidl R. β-diversity, community assembly, and ecosystem functioning[J]. Trends in Ecology & Evolution, 2018, 33(7): 549-564.
doi: 10.1016/j.tree.2018.04.012 |
[1] | 苏宇琦, 马苏力娅, 李雨凡, 韦秋雨, 王洪峰, 李文军. 吉尔吉斯斯坦受威胁维管植物物种多样性及其分布格局[J]. 干旱区研究, 2024, 41(8): 1405-1412. |
[2] | 宋达成, 马全林, 刘世权, 魏林源, 吴昊, 段晓峰, 郭树江. 民勤黏土沙障-人工梭梭林物种多样性及土壤水分变化特征[J]. 干旱区研究, 2024, 41(4): 618-628. |
[3] | 马龙龙, 易志远, 魏采用, 周峰, 李明涛, 乔成龙, 杜灵通. 宁夏盐池县生态系统水分利用效率时空特征及其影响因素[J]. 干旱区研究, 2024, 41(4): 650-660. |
[4] | 李小锋, 惠婷婷, 李耀明, 毛洁菲, 王光宇, 范连连. 不同放牧管理方式对新疆山地草原植物群落特征的影响[J]. 干旱区研究, 2024, 41(1): 124-134. |
[5] | 王理德, 宋达成, 李广宇, 赵赫然, 郑克文. 双龙沟矸石治理过程中植物群落演替及物种多样性研究[J]. 干旱区研究, 2023, 40(8): 1294-1303. |
[6] | 王思淇, 张建军, 张彦勤, 赵炯昌, 胡亚伟, 李阳, 唐鹏, 卫朝阳. 晋西黄土区不同密度刺槐林下植物群落物种多样性[J]. 干旱区研究, 2023, 40(7): 1141-1151. |
[7] | 他富源, 张弘扬, 勾文山, 马维新, 胡桂馨. 民勤温性荒漠草原拟步甲昆虫多样性调查[J]. 干旱区研究, 2023, 40(5): 840-848. |
[8] | 杨霜奇, 宋乃平, 王兴, 陈晓莹, 常道琴. 荒漠草原灰钙土与风沙土水分时空特征[J]. 干旱区研究, 2023, 40(10): 1625-1636. |
[9] | 牟红霞,刘秉儒,李子豪,李国旗,麻冬梅. 矿井水对荒漠草原土壤微生物群落结构及多样性的影响[J]. 干旱区研究, 2022, 39(5): 1618-1630. |
[10] | 张巧关,张道远,刘会良. 新疆葱属植物区系地理特征[J]. 干旱区研究, 2022, 39(2): 522-540. |
[11] | 王童犇,朱芩,侯晓巍,郝家田,李智华,侯琳. 祁连圆柏群落特征沿年降水量梯度的变化格局[J]. 干旱区研究, 2021, 38(6): 1695-1703. |
[12] | 尉迟文思,苗恒录,王星天,高天明,邬佳宾. 阴山北麓荒漠草原干旱气象因子分析[J]. 干旱区研究, 2021, 38(5): 1327-1334. |
[13] | 娄泊远,王永东,闫晋升,艾柯代·艾斯凯尔. 亚寒带荒漠草原不同树种人工林土壤生态化学计量特征[J]. 干旱区研究, 2021, 38(5): 1385-1392. |
[14] | 李彬,武志芳,陶冶,周晓兵,张丙昌. 古尔班通古特沙漠不同类型生物结皮对草本植物多样性影响[J]. 干旱区研究, 2021, 38(2): 438-449. |
[15] | 胡亚,郭新新,岳平,李香云,赵生龙,郭爱霞,左小安. 水分和养分添加对内蒙古荒漠草原沙生针茅生长与生理特性及其敏感性的影响[J]. 干旱区研究, 2021, 38(2): 487-493. |
|