干旱区研究 ›› 2022, Vol. 39 ›› Issue (6): 1717-1727.doi: 10.13866/j.azr.2022.06.03 cstr: 32277.14.AZR.20220603

• 天气与应用气候 • 上一篇    下一篇

祁连山一次降水过程云模式模拟参数的选择及微物理结构特征分析

张文煜1(),任婧1,2(),付丹红2,孔令彬1,田硕1   

  1. 1.郑州大学计算机与人工智能学院/地球科学与技术学院,河南 郑州 450001
    2.中国科学院大气物理研究所云降水物理与强风暴实验室(LACS),北京 100029
  • 收稿日期:2022-04-30 修回日期:2022-06-17 出版日期:2022-11-15 发布日期:2023-01-17
  • 作者简介:张文煜(1964-),男,教授,主要从事大气探测与大气物理方面的研究. E-mail: zhangwy@zzu.edu.cn
  • 基金资助:
    第二次青藏高原综合科学考察研究项目(2019QZKK0104);西北区域人工影响天气能力建设项目研究试验项目(ZQC-R18208)

Selection of cloud model simulation parameters and analysis of microphysical structure characteristics of the precipitation process in the Qilian Mountains

ZHANG Wenyu1(),REN Jing1,2(),FU Danhong2,KONG Lingbin1,TIAN Shuo1   

  1. 1. College of Computer and Artificial Intelligence/School of Geoscience and Technology, Zhengzhou University, Zhengzhou 450001, Henan, China
    2. Key Laboratory for Clouds and Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
  • Received:2022-04-30 Revised:2022-06-17 Published:2022-11-15 Online:2023-01-17

摘要:

使用实测数据结合云模式,对祁连山一次典型层积云系降水过程进行数值模拟研究,探讨参数选择对模拟结果的影响,并对其微物理结构特征进行分析。结果表明:祁连山云模式的最优参数是Thompson方案;各种水成物含量分布基本呈单峰型,01:00 4.5 km附近的霰混合比和雪混合比的值分别可达0.1 g·kg-1和0.7 g·kg-1,此高度层上有较为丰沛的过冷水。从5种水成物的空间分布及时间相关性来看,霰和雪的融化对雨水的形成有主要贡献;垂直方向上云系呈现“催化-供给”的分层结构,8 km高度以上的最高层为冰晶和雪的共存区,0 ℃层高度(4.5 km)以上的过冷区,同时存在霰粒子,云水和雨水。此云结构有利于降水的形成,有利于进行祁连山人工增雨作业。

关键词: 祁连山, 云模式, 模拟参数, 微物理结构, 特征

Abstract:

Using the measured data and cloud model, the precipitation process of a typical stratocumulus system in the Qilian Mountain is numerically simulated. The influence of parameter selection on the simulation results is discussed, and its microphysical structure characteristics are analyzed. The results show that the optimal parameter of the Qilian Mountain cloud model is the Thompson scheme. The content distribution of various aquatic products shows a single peak. The values of graupel and snow mixing ratios near 01:00 and 4.5 km can reach 0.1 g·kg-1 and 0.7 g·kg-1, respectively. There is abundant supercooled water in this height layer. From the spatial distribution and temporal correlation of the five aquatic products, the melting of graupel and snow has a significant contribution to rainwater formation. In the vertical direction, the cloud system presents a layered structure of “catalysis supply”: The highest layer above 8 km is the coexistence area of ice crystals and snow, and the supercooling area above the zero-layer (4.5 km), with graupel particles, cloud water, and rainwater at the same time. This cloud structure is conducive to forming precipitation and artificial precipitation enhancement in the Qilian Mountain.

Key words: Qilian Mountains, cloud mode, simulation parameters, microphysical structure, characteristics