干旱区研究 ›› 2022, Vol. 39 ›› Issue (5): 1398-1409.doi: 10.13866/j.azr.2022.05.06
收稿日期:
2022-04-02
修回日期:
2022-05-23
出版日期:
2022-09-15
发布日期:
2022-10-25
作者简介:
王姣妍(1968-),女,硕士,教授级高级工程师,主要从事干旱区水文水资源研究. E-mail: 基金资助:
Received:
2022-04-02
Revised:
2022-05-23
Online:
2022-09-15
Published:
2022-10-25
摘要:
由于新疆降水站点稀少且分布不均,且现有站点干旱监测资料空间代表性不足,利用遥感降水产品具有覆盖面广、空间分辨率高、时效性好等优点,对于新疆干旱监测研究具有重要意义,Multi-Source Weighted-Ensemble Precipitation(MSWEP)多源遥感降水融合产品在世界各地得到广泛应用。气候变暖背景下,新疆降水变率增加,干旱事件频发,以新疆106个气象站点资料为依据,在对MSWEP降水产品进行误差评估的基础上,结合标准化降水指数SPI,应用MSWEP遥感降水产品,对新疆1980—2021年间干湿变化、干旱事件及其基本特征进行研究。结果表明:(1) MSWEP与站点观测资料的相关性较高(>0.8),MSWEP精度基本满足干旱监测需求;(2) 近42 a新疆干湿变化以变湿为主;(3) 1980年以来,干旱事件频发且特征各异。识别到13次较大干旱事件,1985—1987年发生的干旱事件为近42 a来最严重干旱事件,2009年5—10月发生的干旱事件为强度最高的短时干旱事件;(4) 干旱事件的持续时间、强度、严重度等特征各异,部分事件持续时间短但强度高,部分事件持续时间长但强度偏低。总之,MSWEP遥感降水产品为缺资料地区的干旱监测提供了重要数据支撑。
王姣妍. 基于MSWEP降水产品的新疆干旱时空特征分析[J]. 干旱区研究, 2022, 39(5): 1398-1409.
WANG Jiaoyan. Study on spatiotemporal characteristics of drought in Xinjiang based on Multi-Source Weighted-Ensemble Precipitation multi-source merged precipitation product[J]. Arid Zone Research, 2022, 39(5): 1398-1409.
表2
新疆地区典型干旱事件及其基本特征"
典型干旱事件 | 开始时间 /年-月 | 结束时间 /年-月 | 峰值时间 /年-月 | 持续时 间/月 | 强度 | 峰值 | 严重度 |
---|---|---|---|---|---|---|---|
1980-03 | 1981-06 | 1980-07 | 16 | 0.55 | 1.76 | 8.79 | |
典型干旱事件1 | 1982-11 | 1987-03 | 1985-09 | 53 | 0.85 | 2.79 | 45.08 |
1988-08 | 1989-07 | 1989-05 | 12 | 0.74 | 2.21 | 8.88 | |
1990-10 | 1991-07 | 1991-07 | 10 | 0.36 | 1.02 | 3.64 | |
1991-09 | 1992-05 | 1991-11 | 9 | 0.50 | 2.10 | 4.53 | |
典型干旱事件2 | 1995-03 | 1995-08 | 1995-06 | 6 | 1.09 | 1.59 | 6.53 |
1996-10 | 1998-04 | 1997-11 | 19 | 0.92 | 2.73 | 17.43 | |
2001-02 | 2001-08 | 2001-05 | 7 | 0.56 | 1.05 | 3.89 | |
典型干旱事件3 | 2003-12 | 2005-04 | 2004-10 | 17 | 0.39 | 1.01 | 6.70 |
2006-04 | 2007-06 | 2006-10 | 15 | 0.51 | 1.35 | 7.69 | |
2007-10 | 2009-01 | 2008-07 | 16 | 0.64 | 1.60 | 10.30 | |
典型干旱事件4 | 2009-05 | 2009-10 | 2009-08 | 6 | 1.18 | 2.14 | 7.09 |
2020-06 | 2021-02 | 2020-10 | 9 | 0.51 | 1.19 | 4.63 |
[1] | 木沙·如孜, 雷晓云, 白云岗, 等. 塔里木河流域旱灾发生规律[J]. 干旱区研究, 2014, 31(2): 274-278. |
[Musha Ruzi, Lei Xiaoyun, Bai Yungang, et al. Historical drought disasters occurred in the Tarim River Basin[J]. Arid Zone Research, 2014, 31(2): 274-278. ] | |
[2] | 唐湘玲, 吕新, 欧阳异能, 等. 1978—2014年新疆农作物受极端气候事件影响的灾情变化趋势分析[J]. 中国农学通报, 2017, 33(3): 143-148. |
[Tang Xiangling, Lv Xin, Ouyang Yineng, et al. Disaster trend of crops affected by extreme climatic events in Xinjiang during 1978-2014[J]. Chinese Agricultural Science Bulletin, 2017, 33(3): 143-148. ] | |
[3] | 吴美华, 王怀军, 孙桂丽, 等. 新疆农业气象灾害成因及其风险分析[J]. 干旱区地理, 2016, 39(6): 1212-1220. |
[Wu Meihua, Wang Huaijun, Sun Guili, et al. Formation and risk analysis of meteorological disasters in Xinjiang[J]. Arid Land Geography, 2016, 39(6): 1212-1220. ] | |
[4] |
Dracup J A, Lee K S, Paulson E G. On the definition of droughts[J]. Water Resources Research, 1980, 16(2): 297-302.
doi: 10.1029/WR016i002p00297 |
[5] | 张强, 张良, 崔显成, 等. 干旱监测与评价技术的发展及其科学挑战[J]. 地球科学进展, 2011, 26(7): 763-778. |
[Zhang Qiang, Zhang Liang, Cui Xiancheng, et al. Progresses and challenges in drought ssessment and monitoring[J]. Advances in Earth Science, 2011, 26(7): 763-778. ] | |
[6] | McKee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales[C]// Proceedings of the Eighth Conference on Applied Climatology, Anaheim, California, 1993. |
[7] |
彭振华, 李艳忠, 余文君, 等. 遥感降水产品在中国不同气候区的适用性研究[J]. 地球信息科学学报, 2021, 23(7): 1296-1311.
doi: 10.12082/dqxxkx.2021.200348 |
[Peng Zhenhua, Li Yanzhong, Yu Wenjun, et al. Research on the applicability of remote sensing precipitation products in different climatic regions of China[J]. Journal of Geo-Information Science, 2021, 23(7): 1296-1311. ]
doi: 10.12082/dqxxkx.2021.200348 |
|
[8] |
Guo H, Li M, Nzabarinda V, et al. Assessment of three long-term satellite-based precipitation pstimates against ground observations for drought characterization in northwestern China[J]. Remote Sensing, 2022, 14(4): 828. https://doi.org/10.3390/rs14040828.
doi: 10.3390/rs14040828 |
[9] | 新疆维吾尔自治区水资源公报. 新疆水资源公报(2002-2009)[EB/OL]. http:/slt.Xinjiang.gov.cn/slt/slnb/list_ej.shtml. |
[Water Xinjiang Communique. Xinjiang Water Resources Bulletin(2002-2009)[EB/OL]. http:/slt.Xinjiang.gov.cn/slt/slnb/list_ej.shtml. ] | |
[10] | 胡文峰, 陈玲玲, 姚俊强, 等. 近55年来新疆多时间尺度干旱格局演变特征[J]. 人民珠江, 2019, 40(11): 1-9, 27. |
[Hu Wenfeng, Chen Lingling, Yao Junqiang, et al. Evolution characteristics of drought patterns at multiple timescales in Xinjiang for last 55 years[J]. Pearl River, 2019, 40(11): 1-9, 27. ] | |
[11] | 姚俊强, 李漠岩, 迪丽努尔·托列吾别克, 等. 不同时间尺度下新疆气候“暖湿化”特征[J]. 干旱区研究, 2022, 39(2): 333-346. |
[Yao Junqiang, Li Moyan, Dilinuer Tuoliewubieke, et al. The assessment on“warming-wetting”trend in Xinjiang at multi-scale during 1961-2019[J]. Arid Zone Research, 2022, 39(2): 333-346. ] | |
[12] | 施雅风, 沈永平, 李栋梁, 等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨[J]. 第四纪研究, 2003, 23(2): 152-164. |
[Shi Yafeng, Shen Yongping, Li Dongliang, et al. Discussion on the present climate change from warm-dry to warm-wet in Northwest China[J]. Quaternary Science, 2003, 23(2): 152-164. ] | |
[13] | 谢培, 顾艳玲, 张玉虎, 等. 1961-2015年新疆降水及干旱特征分析[J]. 干旱区地理, 2017, 40(2): 332-339. |
[Xie Pei, Gu Yanling, Zhang Yuhu, et al. Precipitation and drought characteristics in Xinjiang during 1961-2015[J]. Arid Land Geography, 2017, 40(2): 332-339. ] | |
[14] | 轩俊伟, 郑江华, 刘志辉. 基于SPEI的新疆干旱时空变化特征[J]. 干旱区研究, 2016, 33(2): 338-344. |
[Xuan Junwei, Zheng Jianghua, Liu Zhihui. SPEI-based spatiotemporal variation of drought in Xinjiang[J]. Arid Zone Research, 2016, 33(2): 338-344. ] | |
[15] | 张乐园, 王弋, 陈亚宁. 基于SPEI指数的中亚地区干旱时空分布特征[J]. 干旱区研究, 2020, 37(2): 331-340. |
[Zhang Leyuan, Wang Yi, Chen Yaning. Spatial and temporal distribution characteristics of drought in Central Asia based on SPEI index[J]. Arid Zone Research, 2020, 37(2): 331-340. ] | |
[16] | 王乃哲, 景元书, 徐向华, 等. RDI指数在新疆5个地区干旱监测的应用[J]. 干旱区地理, 2020, 43(1): 99-107. |
[Wang Naizhe. Jing Yuanshu, Xu Xianghua, et al. Application of RDI index in drought monitoring of five regions in Xinjiang[J]. Arid Land Geography, 2020, 43(1): 99-107. ] | |
[17] | 丁严, 许德合, 曹连海, 等. 基于CEEMD的LSTM和ARIMA模型干旱预测适用性研究——以新疆为例[J]. 干旱区研究, 2022, 39(3): 734-744. |
[Ding Yan, Xu Dehe, Cao Lianhai, et al. Applicability of the LSTM and ARIMA model in drought prediction based on CEEMD: A case study of Xinjiang[J]. Arid Zone Research, 2022, 39(3): 734-744. ] | |
[18] | 尹文杰, 张梦琳, 胡立堂. 柴达木盆地干旱时空变化特征[J]. 干旱区研究, 2018, 35(2): 387-394. |
[Yin Wenjie, Zhang Menglin, Hu Litang. Spatiotemporal variation of drought in the Qaidam Basin[J]. Arid Zone Research, 2018, 35(2): 387-394. ] | |
[19] |
王素萍, 王劲松, 张强, 等. 多种干旱指数在中国北方的适用性及其差异原因初探[J]. 高原气象, 2020, 39(3): 628-640.
doi: 10.7522/j.issn.1000-0534.2019.00049. |
[Wang Suping, Wang Jinsong, Zhang Qiang, et al. Applicability evaluation of drough indices in northern China and the reasons for their differences[J]. Plateau Meteorology, 2020, 39(3): 628-640. ]
doi: 10.7522/j.issn.1000-0534.2019.00049. |
|
[20] |
贺敏, 宋立生, 王展鹏, 等. 基于多源数据的干旱监测指数对比研究——以西南地区为例[J]. 自然资源学报, 2018, 33(7): 1257-1269.
doi: 10.31497/zrzyxb.20170526 |
[He Min, Song Lisheng, Wang Zhanpeng, et al. Evaluation of drought monitoring indices based on multi-source data in Southwest China[J]. Journal of Natural Resources, 2018, 33(7): 1257-1269. ]
doi: 10.31497/zrzyxb.20170526 |
|
[21] | 王舒, 肖高翔. 4种气象干旱指数在新疆的适用性分析[J]. 人民长江, 2021, 52(9): 86-92, 100. |
[Wang Shu, Xiao Gaoxiang. Applicability analysis of four meteorological drought indices in Xinjiang[J]. Yangtze River, 2021, 52(9): 86-92, 100. ] | |
[22] | 卢新玉, 刘艳, 王秀琴, 等. 新疆地区多源降水融合试验[J]. 干旱区研究, 2020, 37(5): 1223-1232. |
[Lu Xinyu, Liu Yan, Wang Xiuqin, et al. Multisource precipitation data merging experiment in Xinjiang[J]. Arid Zone Research, 2020, 37(5): 1223-1232. ] | |
[23] | 叶尔克江·霍依哈孜, 阿帕尔·肉孜, 柳宏英, 等. 新疆木垒县近51年春、夏季气象干旱特征分析[J]. 湖北农业科学, 2021, 60(14): 57-63. |
[Hoyhazi Erkejan, Ruzi Apar, Liu Hongying, et al. Analysis on the characteristics of spring and summer meteorological drought in Mulei county of Xinjiang in recent 51 years[J]. Hubei Agricultural Sciences, 2021, 60(14): 57-63. ] | |
[24] | Shen Y, Xiong A Y, Wang Y, et al. Performance of high-resolution satellite precipitation products over China[J]. Journal of Geophysical Research : Atmospheres, 2010, 115(D2): 1-17. |
[25] |
Beck H E, Wood E F, Pan M, et al. MSWEP V2 Global 3-Hourly 0.1° precipitation: Methodology and quantitative assessment[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 473-500.
doi: 10.1175/BAMS-D-17-0138.1 |
[26] |
Sen P K. Estimates of the regression coefficient based on Kendall’s Tau[J]. Journal of the American Statistical Association, 1968, 63(324): 1379-1389.
doi: 10.1080/01621459.1968.10480934 |
[27] |
Hamed K H, Rao A R. A modified Mann-Kendall trend test for autocorrelated data[J]. Journal of Hydrology, 1998, 204(1-4): 182-196.
doi: 10.1016/S0022-1694(97)00125-X |
[28] |
Daufresne M, Lengfellner K, Sommer U. Global warming benefits the small in aquatic ecosystems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(31): 12788-12793.
doi: 10.1073/pnas.0902080106 pmid: 19620720 |
[29] |
Huang Q Z, Zhang Q, Singh V P, et al. Variations of dryness/wetness across China: Changing properties, drought risks, and causes[J]. Global and Planetary Change, 2017, 155 : 1-12.
doi: 10.1016/j.gloplacha.2017.05.010 |
[30] |
Huang S Z, Chang J X, Leng G Y et al. Integrated index for drought assessment based on variable fuzzy set theory: A case study in the Yellow River basin, China[J]. Journal of Hydrology, 2015, 527: 608-618.
doi: 10.1016/j.jhydrol.2015.05.032 |
[31] |
Joshi N, Gupta D, Suryavanshi S, et al. Analysis of trends and dominant periodicities in drought variables in India: A wavelet transform based approach[J]. Atmospheric Research, 2016, 182(15): 200-220.
doi: 10.1016/j.atmosres.2016.07.030 |
[32] |
Merino A, López L, Hermida L, et al. Identification of drought phases in a 110-year record from western Mediterranean basin: Trends, anomalies and periodicity analysis for Iberian Peninsula[J]. Global and Planetary Change, 2015, 133: 96-108.
doi: 10.1016/j.gloplacha.2015.08.007 |
[33] |
Hong X G, Guo S L, Xiong L H, et al. Spatial and temporal analysis of drought using entropy-based standardized precipitation index: a case study in Poyang Lake basin, China[J]. Theoretical and Applied Climatology, 2015, 122(3): 543-556.
doi: 10.1007/s00704-014-1312-y |
[34] | Li J Z, Wang Y X, Li S F, et al. A Nonstationary Standardized Precipitation Index incorporating climate indices as covariates[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(23): 12082-12095. |
[35] |
Vicente-Serrano S M, Beguería S, López-Moreno J I, et al. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration inde[J]. Journal of Climate, 2010, 23(7): 1696-1718.
doi: 10.1175/2009JCLI2909.1 |
[36] |
Beguería S, Vicente-Serrano S M, Reig F, et al. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring[J]. International Journal of Climatology, 2014, 34(10): 3001-3023.
doi: 10.1002/joc.3887 |
[37] |
Mahmood R, Li S, Khan B. Causes of recurring drought patterns in Xinjiang, China[J]. Journal of Arid Land, 2010, 2(4): 279-285.
doi: 10.3724/SP.J.1227.2010.00279 |
[38] |
Li Z, Hao Z, Shi X, et al. An agricultural drought index to incorporate the irrigation process and reservoir operations: A case study in the Tarim River Basin[J]. Global and Planetary Change, 2016, 143: 10-20.
doi: 10.1016/j.gloplacha.2016.05.008 |
[39] | Yao J, Zhao Y, Yu X. Spatial-temporal variation and impacts of drought in Xinjiang (Northwest China) during 1961-2015[J]. PeerJ, 2018, 6(e4926). |
[40] | Yevjevich V M. An Objective Approach to Definition and Investigations of Continental Hydrologic Droughts[M]. Fort Collins, Colorado: Colorado State University, 1967. |
[1] | 李小锋, 惠婷婷, 李耀明, 毛洁菲, 王光宇, 范连连. 不同放牧管理方式对新疆山地草原植物群落特征的影响[J]. 干旱区研究, 2024, 41(1): 124-134. |
[2] | 汪翔, 吕海深, 朱永华, 郭晨煜. 两种河道洪水演进方法在新疆山区的应用比较[J]. 干旱区研究, 2023, 40(8): 1240-1247. |
[3] | 王超, 马占仓, 潘成南, 吴星月, 宋文丹, 阎平. 新疆苋属新记录植物[J]. 干旱区研究, 2023, 40(8): 1280-1288. |
[4] | 古丽斯旦·艾尼瓦尔, 吐尔洪·努尔东, 地力胡马尔·阿不都克热木, 买买提明·苏来曼. 新疆薄罗藓科植物新记录[J]. 干旱区研究, 2023, 40(8): 1289-1293. |
[5] | 李虹, 李忠勤, 陈普晨, 彭加加. 近20 a新疆阿尔泰山积雪时空变化及其影响因素[J]. 干旱区研究, 2023, 40(7): 1040-1051. |
[6] | 吕潇雨, 郭浩, 孟翔晨, 包安明, 田芸菲, 朱丽. 基于三维识别的中国干旱事件演变特征分析[J]. 干旱区研究, 2023, 40(6): 849-962. |
[7] | 许君利, 韩海东, 王建. 新疆大气PM2.5来源与潜在贡献源分析[J]. 干旱区研究, 2023, 40(6): 874-884. |
[8] | 薛一波, 黄双燕, 张小啸, 雷加强, 李生宇. 新疆2018年冬季雨雪风沙强降尘事件[J]. 干旱区研究, 2023, 40(5): 681-690. |
[9] | 赵克明, 孙鸣婧, 李霞, 施俊杰, 安大维, 许婷婷. 两种典型大气扩散指数在新疆的分布特征及其适用性对比[J]. 干旱区研究, 2023, 40(5): 691-702. |
[10] | 胡亚男, 裴浩, 姜艳丰, 苗百岭, 贾成朕. 1991—2021年内蒙古降水酸碱度时空变化特征分析[J]. 干旱区研究, 2023, 40(4): 552-562. |
[11] | 董翰林, 王文婷, 谢云, 阿依达娜·叶斯那力, 江源天, 徐嘉淇. 新疆气候干湿变化特征及其影响因素[J]. 干旱区研究, 2023, 40(12): 1875-1884. |
[12] | 王娟, 王钊, 郭斌, 何慧娟, 董金芳. 陕西黄河流域植被碳利用率时空特征及对气候的敏感性研究[J]. 干旱区研究, 2023, 40(12): 1959-1968. |
[13] | 张宗芳, 徐将, 师小军. 新疆野苹果幼苗生长及生物量分配对降水量和降水间隔时间的响应[J]. 干旱区研究, 2023, 40(1): 102-110. |
[14] | 邬晓丹,罗敏,孟凡浩,萨楚拉,尹超华,包玉海. 气候暖湿化背景下新疆极端气候事件时空演变特征分析[J]. 干旱区研究, 2022, 39(6): 1695-1705. |
[15] | 蒋磊,赵毅,张鹏伟,何亮,摆翔. 基于氢氧稳定同位素特征的潜水蒸发影响程度研究[J]. 干旱区研究, 2022, 39(6): 1793-1800. |
|