干旱区研究 ›› 2021, Vol. 38 ›› Issue (1): 247-256.doi: 10.13866/j.azr.2021.01.26 cstr: 32277.14.AZR.20210126
收稿日期:
2020-05-11
修回日期:
2020-07-24
出版日期:
2021-01-15
发布日期:
2021-03-05
作者简介:
桑钰(1995-),女,硕士研究生,主要从事植物生态研究. E-mail: 基金资助:
SANG Yu(),GAO Wenli,Zainur Tursu,FAN Xue,MA Xiaodong()
Received:
2020-05-11
Revised:
2020-07-24
Published:
2021-01-15
Online:
2021-03-05
摘要:
丛枝菌根真菌(Arbuscular Mycorrhizal Fungi,AMF)对植物抗旱、养分吸收等有重要作用,但在特定环境胁迫下不同生活型植物对AMF的响应存在差异。本文以塔里木河下游荒漠河岸林的优势灌木多枝柽柳(Tamarix ramosissima)和常见半灌木疏叶骆驼刺(Alhagi sparsifolia)为研究对象,分析了干旱胁迫处理下(对照组土壤相对含水量为70%±5%、实验组土壤相对含水量为20%±5%)接种AMF(对照组不接菌M-、实验组接菌M+)对多枝柽柳与疏叶骆驼刺混合种植(对照组单一种植)根系生长状况和氮素吸收分配的影响。结果表明:(1) 植物遭受干旱胁迫时,多枝柽柳幼苗和疏叶骆驼刺菌根侵染率均降低了,混合种植显著增加了多枝柽柳幼苗的菌根侵染率(P<0.05);(2) 干旱胁迫下,混合种植M+处理显著增加了多枝柽柳幼苗的地上、地下生物量;(3) 干旱胁迫下,AMF使不同种植模式下两种植物的细根根长和细根表面积均显著增加,使疏叶骆驼刺的比根长显著减小,且混合种植M+处理显著减小了多枝柽柳幼苗的细根比根长;(4) 相比单一种植,干旱胁迫下AMF显著增加了混合种植多枝柽柳幼苗的氮摄取量和地上部分氮分配比率。因此,AMF对于干旱胁迫下与疏叶骆驼刺混生的多枝柽柳幼苗的生长和氮素吸收具有明显的补偿作用,能够帮助塔里木河下游多枝柽柳幼苗较好地度过生长脆弱期。
桑钰,高文礼,再努尔·吐尔逊,范雪,马晓东. 干旱胁迫下AMF对多枝柽柳幼苗和疏叶骆驼刺根系生长和氮素吸收分配的影响[J]. 干旱区研究, 2021, 38(1): 247-256.
SANG Yu,GAO Wenli,Zainur Tursu,FAN Xue,MA Xiaodong. Effects of drought stress and arbuscular-mycorrhizal fungi on root growth, nitrogen absorption, and distribution of two desert riparian plant seedlings[J]. Arid Zone Research, 2021, 38(1): 247-256.
表3
不同水分处理下多枝柽柳幼苗和疏叶骆驼刺地上和地下部分干重"
种植模式 | 接菌 | 对照组CK | 试验组S | ||||
---|---|---|---|---|---|---|---|
地上/g | 地下/g | 地上/g | 地下/g | ||||
单一种植 | 多枝柽柳 | M+ | 0.97±1.4Ba | 1.17±0.7Ca | 1.11±0.7Bab | 0.77±0.2Cc | |
M- | 0.88±0.2Bb | 0.96±0.3Ca | 0.93±0.2Ba | 0.62±0.7Cc | |||
疏叶骆驼刺 | M+ | 2.30±0.7Ab | 7.11±1.6Aa | 2.57±1.4Ab | 1.82±0.5Ac | ||
M- | 1.83±0.6Ac | 5.41±1.8Ba | 0.45±0.1Cd | 0.79±0.4Cd | |||
混合种植 | 多枝柽柳 | M+ | 0.88±0.3Bb | 0.96±0.7Ca | 0.62±0.2Cc | 0.61±0.4Cc | |
M- | 0.72±0.2Bbc | 0.87±0.5Cb | 0.49±0.1Dd | 0.32±0.2Dd | |||
疏叶骆驼刺 | M+ | 1.88±0.6Ac | 5.54±1.7Ba | 1.13±0.7Bc | 0.87±0.4Bd | ||
M- | 1.69±0.7Ab | 4.67±1.4Ba | 0.92±0.2Bcd | 0.76±0.2Bd |
表4
不同水分处理下AMF对多枝柽柳和疏叶骆驼刺根长的影响"
种植模式 | 水分处理 | 粗根长度(d>2 mm) | 细根长度(0.5 mm<d<2 mm) | ||||
---|---|---|---|---|---|---|---|
M+ | M- | M+ | M- | ||||
单一种植 | 多枝柽柳 | CK | 14.7±0.7Cab | 13.1±0.5Cb | 17.9±0.8Ba | 15.7±0.5Ca | |
S | 6.3±0.5Dc | 5.2±0.3Dc | 12.9±0.8Bb | 10.4±0.4Cb | |||
疏叶骆驼刺 | CK | 23.5±0.2Aa | 20.7±0.4Aa | 28.7±0.7Aa | 22.5±0.5Ba | ||
S | 17.3±0.7Bb | 15.3±0.4Bb | 24.7±0.8Aa | 19.9±0.5Bb | |||
混合种植 | 多枝柽柳 | CK | 13.9±0.1Cc | 12.1±0.4Cc | 19.7±0.7Bb | 15.9±0.5Cc | |
S | 7.2±0.5Db | 6.4±0.6Dc | 15.7±0.4Cc | 9.7±0.5Dc | |||
疏叶骆驼刺 | CK | 22.7±0.6Ab | 19.7±0.7Bb | 30.1±0.4Aa | 19.3±0.7Bb | ||
S | 18.2±0.5Bb | 13.4±1.2Cc | 25.7±0.2Ab | 17.6±0.6Cc |
表5
不同水分处理下AMF对多枝柽柳和疏叶骆驼刺根表面积的影响"
种植模式 | 水分处理 | 粗根表面积(d>2 mm) | 细根表面积(0.5 mm<d<2 mm) | ||||
---|---|---|---|---|---|---|---|
M+ | M- | M+ | M- | ||||
单一种植 | 多枝柽柳 | CK | 147.3±0.7Ba | 103.1±0.5Aa | 315.24±7.4Ab | 304.32±6.4Ab | |
S | 93.5±0.5Cb | 75.2±0.3Dc | 298.21±6.4Bc | 287.14±7.6Cc | |||
疏叶骆驼刺 | CK | 205.3±0.2Aa | 180.7±0.4Ab | 323.13±6.Aab | 310.57±7.1Ab | ||
S | 173.8±0.7Bc | 154.3±0.4Bc | 287.56±6.2Ba | 273.75±5.4Cb | |||
混合种植 | 多枝柽柳 | CK | 109.9±0.1Bc | 72.1±0.4Dc | 321.13±5.6Aa | 310.24±7.3Aab | |
S | 97.2±0.5Cb | 66.4±0.6Dc | 281.71±4.7Bb | 277.81±6.3Bc | |||
疏叶骆驼刺 | CK | 112.7±0.6Cb | 89.7±0.7Cb | 313.45±6.9Aab | 297.76±7.3Bab | ||
S | 88.2±0.5Db | 73.4±1.2Dc | 253.14±4.1Cb | 236.17±3.8Cb |
表6
不同水分处理下AMF对多枝柽柳和疏叶骆驼刺比根长的影响"
种植模式 | 水分处理 | 粗根比根长(d>2 mm) | 细根比根长(0.5 mm<d<2 mm) | ||||
---|---|---|---|---|---|---|---|
M+ | M- | M+ | M- | ||||
单一种植 | 多枝柽柳 | CK | 101.1±0.5Aa | 144.3±0.7Aa | 274.3±2.1Aa | 297.3±1.1Aa | |
S | 65.2±0.3Dc | 83.5±0.5Cb | 231.1±0.9Bb | 267.7±2.4Ab | |||
疏叶骆驼刺 | CK | 100.7±0.4Aa | 125.3±0.2Aa | 323.8±0.9Ab | 376.9±1.8Aa | ||
S | 74.3±0.4Ca | 93.8±0.7Bb | 287.4±1.5Ab | 313.9±0.6Aa | |||
混合种植 | 多枝柽柳 | CK | 92.1±0.4Bc | 109.9±0.1Cc | 286.3±0.7Aa | 312.6±0.3Aa | |
S | 67.4±0.6Dc | 87.2±0.5Cb | 224.9±1.2Bb | 277.3±0.7Ba | |||
疏叶骆驼刺 | CK | 79.7±0.7Bb | 106.7±0.6Bb | 309.7±0.3Ab | 356.9±1.3Ab | ||
S | 63.4±1.2Dc | 87.2±0.5Cb | 255.3±0.7Bb | 278.8±1.5Ba |
[1] | 雷垚, 郝志鹏, 陈保冬. 土著菌根真菌和混生植物对羊草生长和磷营养的影响[J]. 生态学报, 2013,33(4):1071-1079. |
[ Lei Yao, Hao Zhipeng, Chen Baodong. Effects of indigenous AM fungi and neighboring plants on the growth and phosphorus nutrition of Leymus chinensis[J]. Acta Ecologica Sinica, 2013,33(4):1071-1079. ] | |
[2] | 李军帅. 丛枝菌根真菌菌丝侵染特性与植物系统性关系的研究[D]. 兰州: 兰州大学, 2016. |
[ Li Junshuai. Studying on Between Hyphal Infection Characteristic of AMF and Phylogeny of Plant[D]. Lanzhou: Lanzhou University, 2016. ] | |
[3] | 向丹, 徐天乐, 李欢, 等. 丛枝菌根真菌的生态分布及其影响因子研究进展[J]. 生态学报, 2017,37(11):3597-3606. |
[ Xiang Dan, Xu Tianle, Li Huan, et al. Ecological distribution of arbuscular mycorrhizal fungi and the influencing factors[J]. Acta Ecologica Sinica, 2017,37(11):3597-3606. ] | |
[4] | HE X H, Critchley C, Bledsoe C. Nitrogen transfer within and between plants through common mycorrhizalnetworks (CMNs)[J]. Critical Reviews in Plant Sciences, 2003,22(6):531-567. |
[5] | Booth M G. Mycorrhizal networks mediate overstorey-understorey competition in a temperate forest[J]. Ecology Letters, 2004,7(7):538-546. |
[6] | 钟小莉, 马晓东, 吕豪豪, 等. 干旱胁迫下氮素对胡杨幼苗生长及光合的影响[J]. 生态学杂志, 2017,36(10):2777-2786. |
[ Zhong Xiaoli, Ma Xiaodong, Lyu Haohao, et al. Effect of nitrogen on growth and photosynjournal of Populus euphratica seedlings under drought stress[J]. Chinese Journal of Ecology, 2017,36(10):2777-2786. ] | |
[7] | 马嘉琦. 丛枝菌根真菌对植物耐旱性的影响研究进展[J]. 生物技术世界, 2016(3):63-63. |
[ Ma Jiaqi. Effects of arbuscular mycorrhizal fungi on plant drought tolerance: Research progress[J]. Biotech World, 2016(3):63-63. ] | |
[8] | Ali Ganjeali, Elham Ashiani, Maryam Zare, et al. Influences of the arbuscular mycorrhizal fungus Glomus mosseae on morphophysiological traits and biochemical compounds of common bean (Phaseolus vulgaris) under drought stress[J]. South African Journal of Plant and Soil, 2018,35(2):121-127. |
[9] | Renee H P, Jonathan B G, Todd M P, et al. Habitat-specific AMF symbioses enhance drought tolerance of a native Kenyan grass[J]. Acta Oecologica, 2017,78:71-78. |
[10] | Ruiz-Lozano J M, Azcón R. Mycorrhizal colonization and drought stress as factors affecting nitrate reductase activity in lettuce plants[J]. Agriculture, Ecosystems and Environment, 1996,60(2-3):175-181. |
[11] | Suri V K, Kumar A, Choudhary A. AM-fungi lead to better plant nutrient acquisition and drought tolerance in agricultural crops: A review[J]. Current Advances in Agricultural Sciences, 2017,9(1):1-12. |
[12] | Ingraffia R, Amato G, Frenda A S, et al. Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N2 fixation, N transfer, and growth in a wheat/faba bean intercropping system[J]. PLoS ONE, 2019,14(3):103116-103116. |
[13] | Wahbi S, Maghraoui T, Hafidi M, et al. Enhanced transfer of biologically fixed N from faba bean to intercropped wheat through mycorrhizal symbiosis[J]. Applied Soil Ecology, 2016,107:91-98. |
[14] | 张瑞群, 马晓东, 吕豪豪. 多枝柽柳幼苗生长及其根系解剖结构对水盐胁迫的响应[J]. 草业科学, 2016,33(6):1164-1173. |
[ Zhang Ruiqun, Ma Xiaodong, Lyu Haohao. Response of growth and anatomical structure of roots of Tamarix ramosissima seedlings to salinity and water stress[J]. Pratacultural Science, 2016,33(6):1164-1173. ] | |
[15] | 杨玉海, 陈亚宁, 李卫红. 荒漠河岸林植物丛枝菌根真菌侵染及环境影响因子——以塔里木河下游为例[J]. 自然科学进展, 2008,18(4):397-405. |
[ Yang Yuhai, Chen Yaning, Li Weihong. Fungal infection of arbuscular mycorrhizal fungi and environmental impact ctors in desert riparitic forests: A case study of the lower Tarim River[J]. Progress in Natural Science, 2008,18(4):397-405. ] | |
[16] | 孟晓燕, 尹林克, 陈理. 塔里木河下游丛枝菌根植物的侵染[J]. 干旱区地理, 2008,31(1):102-108. |
[ Meng Xiaoyan, Yin Linke, Chen Li. Arbuscular mycorrhizaes of common plants infection at the lower reaches of Tarim River[J]. Arid Land Geography, 2008,31(1):102-108. ] | |
[17] | 杨玉海, 陈亚宁, 蔡柏岩, 等. 极端干旱区胡杨根围丛枝菌根真菌的分离与鉴定[J]. 干旱区地理, 2012,35(2):260-266. |
[ Yang Yuhai, Chen Yaning, Cai Boyan, et al. Arbuscular mycorrhizal in roots of Populus euphratic in the lower reaches of Tarim River in the extreme arid area[J]. Arid Land Geography, 2012,35(2):260-266. ] | |
[18] | 何树斌, 郭理想, 李菁, 等. 丛枝菌根真菌与豆科植物共生体研究进展[J]. 草业学报, 2017,26(1):187-194. |
[ He Shubin, Guo Lixiang, Li Jing, et al. Advances in arbuscular mycorrhizal fungi and legumes symbiosis research[J]. Acta Prataculturae Sinica, 2017,26(1):187-194. ] | |
[19] | 王幼珊, 陈理, 张淑彬, 等. 新疆天然胡杨林和野生骆驼刺丛枝菌根真菌多样性研究初报[J]. 干旱区研究, 2010,27(6):927-932. |
[ Wang Youshan, Chen Li, Zhang Shubin, et al. Biodiversity of arbuscular mycorrhizal fungi in the natural forests of Populus euphratica and Alhagi sparsifolia in Xinjiang[J]. Arid Zone Research, 2010,27(6):927-932. ] | |
[20] |
Liu Q, Parsons A J, Xue H, et al. Functional characterization and transcript analysis of an alkaline phosphatase from the arbuscular mycorrhizal fungus Funneliformis mosseae[J]. Fungal Genetics and Biology, 2013,54:52-59.
doi: 10.1016/j.fgb.2013.02.009 pmid: 23474124 |
[21] | Chen K, Shi S M, Yang X H. Contribution of arbuscular mycorrhizal inoculation to the growth and photosynjournal of mulberry in karst rocky desertification area[J]. Applied Mechanics and Metirals, 2014,488(8):769-773. |
[22] |
Barto E K, Hilker M, Müller F, et al. The fungal fast lane: Common mycorrhizal networks extend bioactive zones of allelochemicals in soils[J]. PLoS ONE, 2011,6(11):e27195.
doi: 10.1371/journal.pone.0027195 pmid: 22110615 |
[23] | 刘欢. 不同丛枝菌根真菌对四种植物生长特性影响[D]. 兰州: 甘肃农业大学, 2016. |
[ Liu Huan. Effect of Various Arbuscular Mycorrhizal Fungi on Plant Growth Characteristics[D]. Lanzhou: Gansu Agricultural University, 2016. ] | |
[24] | Merrild M P, Ambus P, Rosendahl S. Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants[J]. New Phytologist, 2013,200(1):229-240. |
[25] | Weremijewicz J, Sternberg L D, Janos D P. Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants[J]. New Phytologist, 2016,212(2):461-471. |
[26] | 韩艳英, 叶彦辉, 王贞红, 等. 西藏砂生槐根系生物量、比根长和根长密度[J]. 东北林业大学学报, 2014,42(2):39-41. |
[ Han Yanying, Ye Yanhui, Wang Zhenhong, et al. Root biomass, specific root length and root length density of Sophora moorcroftian in Tibet[J]. Journal of Northeast Forestry University, 2014,42(2):39-41. ] | |
[27] | Veiga R S, Faccio A, Genre A. Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana[J]. Plant Cell & Environment, 2013,36(11):1926-1937. |
[28] | 文哲. 15N同位素稀释技术和示踪技术在森林土壤N素研究中的应用[J]. 南方农业, 2016,10(30):102-103, 109. |
[ Wen Zhe. 15N application on isotope dilution technique and tracer technique in the study of N element in forest soil[J]. South China Agriculture, 2016,10(30):102-103, 109. ] | |
[29] | 刘贝, 高媛, 宋文俊, 等. AMF对烟草氮代谢及渗透调节物质的影响[J]. 菌物研究, 2017,15(1):14-20. |
[ LiuBei, Gao Yuan, Song Wenjun, et al. Effects of AMF on nitrogen metabolism and osmotic regulators in tobacco[J]. Journal of Fungal Research, 2017,15(1):14-20. ] | |
[30] | 邹英宁, 吴强盛, 李艳, 等. 丛枝菌根真菌对枳根系形态和蔗糖、葡萄糖含量的影响[J]. 应用生态学报, 2014,25(4):1125-1129. |
[ Zou Yingning, Wu Qiangsheng, Li Yan, et al. Effects of arbuscular mycorrhizal fungi on root system morphology and sucrose and glucose contents of Poncirus trifoliata[J]. Chinese Journal of Applied Ecology, 2014,25(4):1125-1129. ] | |
[31] |
Walder F, Niemann H, Natarajan M, et al. Mycorrhizal networks: Common goods of plants shared under unequal terms of trade[J]. Plant Physiology, 2012,159:789-797.
doi: 10.1104/pp.112.195727 |
[32] | 马坤, 杨建军, 李璐, 等. 接种丛枝菌根真菌后干旱胁迫对木棉根区土壤和体内养分的影响[J]. 中南林业科技大学学报, 2017,37(11):90-95, 102. |
[ Ma Kun, Yang Jianjun, Li Lu, et al. Drought stress effects of nutrients of the Bombax ceiba at the root soil and plants body after inoculation of AMF[J]. Journal of Central South University of Forestry&Technology, 2017,37(11):90-95, 102. ] | |
[33] | 赖金莉, 李欣欣, 薛磊, 等. 植物抗旱性研究进展[J]. 江苏农业科学, 2018,46(17):23-27. |
[ Lai Jinli, Li Xinxin, Xue Lei, et al. Research progress of plant drought resistance[J]. Jiangsu Agricultural Sciences, 2018,46(17):23-27. ] | |
[34] |
Ma H L, Tecimen H B, Lin W, et al. Role of soluble and exchangeable nitrogen pools in N cycling and the impact of nitrogen added in forest soil[J]. Environmental Science and Pollution Research International, 2020,27(5):5398-5407.
doi: 10.1007/s11356-019-07316-y pmid: 31848955 |
[35] | Yang H, Zang Y, Yuan Y. Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: Evidence from ITS rDNA sequence metadata[J]. BMC Evolutionary Biology, 2012,2(1):1-13. |
[36] | 雷垚, 伍松林, 郝志鹏, 等. 丛枝菌根根外菌丝网络形成过程中的时间效应及植物介导作用[J]. 西北植物学报, 2013,33(1):154-161. |
[ Lei yao, Wu Songlin, Hao Zhipeng, et al. Development of arbuscular mycorrhizal hyphal networks mediated by different plants and the time effects[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013,33(1):154-161. ] |
[1] | 张斌, 李从娟, 易光平, 刘冉. 梭梭和头状沙拐枣形态及生理生化特性对干旱胁迫的响应[J]. 干旱区研究, 2024, 41(7): 1177-1184. |
[2] | 唐维春, 刘小娥, 苏世平, 田晓娟, 唐庆童, 张婧. 甘肃兴隆山不同演替阶段群落土壤氮素矿化对温度的响应[J]. 干旱区研究, 2024, 41(6): 984-997. |
[3] | 王梓翔, 任悦, 鲁莹, 高广磊, 丁国栋, 张英. 干旱-复水对樟子松幼苗生理特征的影响[J]. 干旱区研究, 2024, 41(12): 2120-2131. |
[4] | 白炬, 刘晓林, 李申, 梁哲铭, 胥子航, 王永亮, 杨治平. 污泥热碱液对干旱胁迫下小青菜生长的缓解机制[J]. 干旱区研究, 2024, 41(1): 80-91. |
[5] | 颜巧芳, 单立山, 解婷婷, 王红永, 师亚婷. 珍珠柴幼苗叶片和根系形态特征对干旱胁迫的响应[J]. 干旱区研究, 2024, 41(1): 92-103. |
[6] | 薛栋元, 胡海珠, 张锦宁, 任嘉伟. 牧区河岸潜流带硝酸盐氮和氨氮浓度对水文过程的响应机制[J]. 干旱区研究, 2023, 40(6): 937-948. |
[7] | 徐梦琦, 高艳菊, 张志浩, 黄彩变, 曾凡江. 干旱胁迫对疏叶骆驼刺幼苗生长和生理的影响[J]. 干旱区研究, 2023, 40(2): 257-267. |
[8] | 胡焕琼, 李利, 于军, 梁海连, 吕瑞恒. 四翅滨藜和多枝柽柳对土壤干旱的响应差异[J]. 干旱区研究, 2023, 40(12): 2007-2015. |
[9] | 王紫瑄, 解甜甜, 王雅茹, 杨杰艳, 杨秀清. 丛枝菌根真菌(AMF)对蒙古沙冬青幼苗的促生特性及作用机制[J]. 干旱区研究, 2023, 40(1): 78-89. |
[10] | 李泽厚,李蕊希,张舒斌,王崇斌,郑明明,董叶卿,吴雪. 多枝柽柳叶片结构和化学性状对土壤水分变化的响应[J]. 干旱区研究, 2022, 39(5): 1486-1495. |
[11] | 田小霞,卫晓锋,魏浩,许明爽,毛培春. 6种牧草苗期耐旱性综合评价[J]. 干旱区研究, 2022, 39(3): 978-985. |
[12] | 余洋,张志浩,杨建明,柴旭田,曾凡江. 疏叶骆驼刺叶、根生态化学计量特征对水氮添加的响应[J]. 干旱区研究, 2022, 39(2): 551-559. |
[13] | 李嘉珞,郭米山,高广磊,阿拉萨,杜凤梅,殷小琳,丁国栋. 沙地樟子松菌根化幼苗对干旱胁迫的生理响应[J]. 干旱区研究, 2021, 38(6): 1704-1712. |
[14] | 胡亚,郭新新,岳平,李香云,赵生龙,郭爱霞,左小安. 水分和养分添加对内蒙古荒漠草原沙生针茅生长与生理特性及其敏感性的影响[J]. 干旱区研究, 2021, 38(2): 487-493. |
[15] | 杨彪生,单立山,马静,解婷婷,杨洁,韦昌林. 红砂幼苗生长及根系形态特征对干旱-复水的响应[J]. 干旱区研究, 2021, 38(2): 469-478. |
|