干旱区研究 ›› 2022, Vol. 39 ›› Issue (2): 551-559.doi: 10.13866/j.azr.2022.02.22
余洋1,2,3,4(),张志浩1,2,3,杨建明5,柴旭田1,2,3,4,曾凡江1,2,3(
)
收稿日期:
2021-07-16
修回日期:
2021-12-23
出版日期:
2022-03-15
发布日期:
2022-03-30
通讯作者:
曾凡江
作者简介:
余洋(1994-),男,硕士研究生,主要从事荒漠植物生理生态研究. E-mail: 基金资助:
YU Yang1,2,3,4(),ZHANG Zhihao1,2,3,YANG Jianming5,CHAI Xutian1,2,3,4,ZENG Fanjiang1,2,3(
)
Received:
2021-07-16
Revised:
2021-12-23
Online:
2022-03-15
Published:
2022-03-30
Contact:
Fanjiang ZENG
摘要:
氮素和水分是影响荒漠植物生长的重要因素,而全球变化主要驱动因素的氮沉降和干旱会直接改变土壤中这2种资源的可利用性。以塔克拉玛干南缘优势植物疏叶骆驼刺(Alhagi sparsifolia Shap.)一年生幼苗为研究对象,设置了盆栽试验。通过添加不同水平的N肥和水分,用于模拟不同水平的N沉降速率(0, 3.0, 6.0, 9.0 g·m-2·a-1)和水分条件(干旱和充分水),探究这2种因素对骆驼刺叶片与细根化学计量特征的影响。结果表明:(1) 除叶片P含量外,N和水分添加独立或交互作用影响骆驼刺叶片和细根的养分状况。干旱条件下,N添加显著降低了叶片N、Mn、Zn、Cu等元素含量(P<0.01),而在一定程度上提高了细根对这些元素的吸收;(2) 骆驼刺细根中富集着Mn、Zn、Cu、Fe等微量元素,而将N、P、K等大量元素更多地分配给叶片;(3) 干旱胁迫条件下施加3.0 g·m-2·a-1,水分充足条件下添加6.0 g·m-2·a-1或9.0 g·m-2·a-1,可以显著缓解骆驼刺细根的N限制(N:P<14);(4) 骆驼刺叶片和细根的营养元素在器官内和器官间存在复杂的相互作用,器官间的这种相互关系发生的比率大于器官内部,细根次之,叶片最低。这些结果表明骆驼刺在环境资源波动的背景下,能够协调地上和地下的养分关系;外源的N输入可以改善骆驼刺细根的养分状况,为荒漠植被修复和养分高效管理提供了科学参考。
余洋,张志浩,杨建明,柴旭田,曾凡江. 疏叶骆驼刺叶、根生态化学计量特征对水氮添加的响应[J]. 干旱区研究, 2022, 39(2): 551-559.
YU Yang,ZHANG Zhihao,YANG Jianming,CHAI Xutian,ZENG Fanjiang. Stoichiometric characteristics of leaves and fine roots in Alhagi sparsifolia in response to the addition of nitrogen and water[J]. Arid Zone Research, 2022, 39(2): 551-559.
表1
骆驼刺叶片与细根中营养元素化学计量比"
器官 | 水氮处理 | N:P | N:K | K:P | K:Ca | Ca:Mg | K:Mg | Fe:Mn | |
---|---|---|---|---|---|---|---|---|---|
叶片 | D | N0 | 17.38±1.61 | 1.8±0.13a | 9.64±0.20 | 1.16±0.17a | 4.51±0.72 | 5.17±0.12ab | 2.59±0.37b |
N1 | 15.77±4.64 | 1.77±0.25ab | 9.29±3.81 | 1.2±0.09a | 4.23±0.66 | 5.11±1.19ab | 6.27±3.51a | ||
N2 | 18.05±0.50 | 2.01±0.12a | 8.98±0.28 | 0.84±0.05b | 5.1±0.43 | 4.28±0.6b | 2.81±0.03b | ||
N3 | 17.79±1.91 | 1.47±0.13b | 12.11±0.22 | 1.4±0.16a | 4.52±0.54 | 6.28±0.15a | 3.8±0.29ab | ||
W | N0 | 18.44±1.35 | 1.72±0.16c | 10.73±0.19a | 1.53±0.17a | 6.69±2.93a | 10±3.52a | 3.45±0.35c | |
N1 | 18.11±0.90 | 1.81±0.01bc | 9.98±0.42ab | 1.34±0.07b | 3.24±0.2b | 4.35±0.47b | 4.53±0.57b | ||
N2 | 17.07±1.01 | 2.39±0.27a | 7.25±1.25c | 0.91±0.07c | 3.15±0.17b | 2.84±0.06b | 6.71±0.56a | ||
N3 | 20.04±2.79 | 2.13±0.2ab | 9.4±0.41b | 1.07±0.03c | 3.63±0.11b | 3.89±0.02b | 3.88±0.07bc | ||
细根 | D | N0 | 10.89±2.89b | 1.44±0.05c | 7.5±1.75a | 0.22±0.00a | 4.44±0.63 | 0.96±0.15a | 43.30±0.59 |
N1 | 15.32±0.90a | 3.73±0.25a | 4.11±0.18b | 0.09±0.00c | 4.68±0.42 | 0.44±0.02c | 39.94±1.64 | ||
N2 | 10.88±1.08b | 2.08±0.16b | 5.29±0.9b | 0.16±0.02b | 4.11±0.48 | 0.63±0.03b | 42.88±3.39 | ||
N3 | 10.04±1.18b | 1.86±0.04b | 5.39±0.53b | 0.14±0.01b | 4.52±0.35 | 0.62±0.02b | 43.64±3.93 | ||
W | N0 | 13.15±0.43a | 2.88±0.28a | 4.58±0.29 | 0.22±0.03a | 4.07±0.08b | 0.89±0.12a | 45.3±5.83 | |
N1 | 8.86±0.67b | 1.62±0.11b | 5.49±0.78 | 0.13±0.02b | 4.6±0.07a | 0.59±0.09b | 42.87±3.37 | ||
N2 | 15.27±2.27a | 2.93±0.18a | 5.25±1.10 | 0.13±0.01b | 4.02±0.33b | 0.53±0.09b | 48.65±2.73 | ||
N3 | 14.42±2.28a | 2.53±0.3a | 5.68±0.22 | 0.15±0.01b | 4.07±0.17b | 0.61±0.08b | 45.7±4.06 |
表2
骆驼刺叶片与细根中营养元素化学计量比的双因素方差分析"
叶片 | 细根 | ||||||
---|---|---|---|---|---|---|---|
N | W | N×W | N | W | N×W | ||
N:P | 0.834 | 1.659 | 0.725 | 0.521 | 2.842 | 14.560*** | |
N:K | 8.377** | 11.990** | 5.322** | 9.626*** | 7.207* | 97.526*** | |
K:P | 3.717* | 1.274 | 2.465 | 2.098 | 0.819 | 6.542** | |
K:Ca | 21.152*** | 1.803 | 9.976*** | 39.338*** | 0.716 | 2.861 | |
Ca:Mg | 3.270* | 0.814 | 3.814* | 2.506 | 2.789 | 0.401 | |
K:Mg | 9.531*** | 0.012 | 8.754** | 27.266*** | 0.058 | 2.658 | |
Fe:Mn | 3.925* | 2.171 | 4.987* | 1.674 | 4.923* | 0.379 |
[1] | 张娟, 李广, 袁建钰, 等. 水氮调控对旱作春小麦土壤、叶片养分含量的影响[J]. 干旱区研究, 2021, 38(6):1750-1759. |
[ Zhang Juan, Li Guang, Yuan Jianyu, et al. Effects of water and nitrogen regulation on soil and leaf stoichiometric characteristics of spring wheat in dry farming[J]. Arid Zone Research, 2021, 38(6):1750-1759. ] | |
[2] |
Bobbink R, Hicks K, Galloway J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synjournal[J]. Ecological Applications, 2010, 20(1):30-59.
doi: 10.1890/08-1140.1 |
[3] | 王斌, 黄刚, 马健, 等. 5种荒漠短命植物养分再吸收对水氮添加的响应[J]. 中国沙漠, 2016, 36(2):415-422. |
[ Wang Bin, Huang Gang, Ma Jian, et al. Responses of nutrients reabsorption of five desert ephemeral plants to water and nitrogen additions[J]. Journal of Desert Research, 2016, 36(2):415-422. ] | |
[4] | 李发奎, 李金霞, 孙小妹, 等. 黑果枸杞茎叶生长及其生态化学计量特征对灌水施肥的响应[J]. 干旱区研究, 2020, 37(2):452-461. |
[ Li Fakui, Li Jinxia, Sun Xiaomei, et al. Effects of irrigation and fertilization on the stem and leaf growth and ecostoichiometric characteristics of Lycium ruthenicum Murr.[J]. Arid Zone Research, 2020, 37(2):452-461. ] | |
[5] |
Liu X J, Zhang Y, Han W X, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438):459-462.
doi: 10.1038/nature11917 |
[6] |
Zhou X B, Bowker M A, Tao Y, et al. Chronic nitrogen addition induces a cascade of plant community responses with both seasonal and progressive dynamics[J]. Science of The Total Environment, 2018, 626:99-108.
doi: 10.1016/j.scitotenv.2018.01.025 |
[7] | 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8):3937-3947. |
[ Wang Shaoqiang, Yu Guirui. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Acta Ecologica Sinica, 2008, 28(8):3937-3947. ] | |
[8] |
Elser J J, Sterner R W, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters, 2000, 3(6):540-550.
doi: 10.1111/j.1461-0248.2000.00185.x |
[9] |
Sabine G. N : P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2):243-266.
doi: 10.1111/nph.2004.164.issue-2 |
[10] |
Mao R, Zeng D H, Zhang X H, et al. Responses of plant nutrient resorption to phosphorus addition in freshwater marsh of Northeast China[J]. Scientific Reports, 2015, 5(1):8097.
doi: 10.1038/srep08097 |
[11] |
Kou L, Mccormack M L, Chen W W, et al. Nitrogen ion form and spatio-temporal variation in root distribution mediate nitrogen effects on lifespan of ectomycorrhizal roots[J]. Plant and Soil, 2017, 411(1-2):261-273.
doi: 10.1007/s11104-016-3018-7 |
[12] | 黄彩变, 曾凡江, 雷加强. 骆驼刺幼苗生长和功能性状对不同水氮添加的响应[J]. 草业学报, 2016, 25(12):150-160. |
[ Huang Caibian, Zeng Fanjiang, Lei Jiaqiang. Growth and functional trait responses of Alhagi sparsifolia seedlings to water and nitrogen addition[J]. Acta Prataculturae Sinica, 2016, 25(12):150-160. ] | |
[13] |
Zhang Z H, Tariq A, Zeng F J, et al. Nitrogen application mitigates drought-induced metabolic changes in Alhagi sparsifolia seedlings by regulating nutrient and biomass allocation patterns[J]. Plant Physiology and Biochemistry, 2020, 155(5):828-841.
doi: 10.1016/j.plaphy.2020.08.036 |
[14] |
Zhang Z H, Tariq A, Zeng F J, et al. Involvement of soluble proteins in growth and metabolic adjustments of drought-stressed Calligonum mongolicum seedlings under nitrogen addition[J]. Plant Biology, 2021, 23(1):32-43.
doi: 10.1111/plb.13190 pmid: 33012086 |
[15] |
Bünemann E K, Oberson A, Frossard E. Phosphorus in action: Biological processes in soil phosphorus cycling[J]. Soil Biology, 2011(26): doi: 10.1007/978-3-642-15271-9.
doi: 10.1007/978-3-642-15271-9 |
[16] |
Chen F S, Niklas K J, Liu Y, et al. Nitrogen and phosphorus additions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age[J]. Tree Physiology, 2015, 35(10):1106-1117.
doi: 10.1093/treephys/tpv076 |
[17] |
Kou L, Chen W W, Jiang L, et al. Simulated nitrogen deposition affects stoichiometry of multiple elements in resource-acquiring plant organs in a seasonally dry subtropical forest[J]. Science of the Total Environment, 2018, 624:611-620.
doi: 10.1016/j.scitotenv.2017.12.080 |
[18] |
Sardans J, J Peñuelas, Ogaya R. Drought’s impact on Ca, Fe, Mg, Mo and S concentration and accumulation patterns in the plants and soil of a Mediterranean evergreen Quercus ilex forest[J]. Biogeochemistry, 2008, 87(1):49-69.
doi: 10.1007/s10533-007-9167-2 |
[19] | Sardans J, Peñuelas J. Potassium: A neglected nutrient in global change[J]. Global Ecology and Biogeography Letters, 2015, 24(3):261-275. |
[20] | Hepler P K, Wayne R O. Calcium and plant development[J]. Plant Physiology, 1985, 36:397-439. |
[21] |
Laing W, Greer D, Sun O, et al. Physiological impacts of Mg deficiency in Pinus radiata: Growth and photosynjournal[J]. New Phytologist, 2000, 146(1):47-57.
doi: 10.1046/j.1469-8137.2000.00616.x |
[22] |
Xia M X, Guo D L, Pregitzer K S. Ephemeral root modules in Fraxinus mandshurica[J]. New Phytologist, 2010, 188(4):1065-1074.
doi: 10.1111/nph.2010.188.issue-4 |
[23] |
McCormack M L, Dickie L A, Eissenstat D M, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes[J]. New Phytologist, 2015, 207(3):505-518.
doi: 10.1111/nph.13363 pmid: 25756288 |
[24] | 闫景明, 周晓兵, 张静, 等. 新疆野苹果枝条化学计量海拔变异特征研究[J]. 干旱区研究, 2021, 38(2):450-459. |
[ Yan Jingming, Zhou Xiaobing, Zhang Jing, et al. Variation in one-year-old branch stoichiometry of Malus sieversii at different altitudes and the influencing factors in Tianshan Mountains, China[J]. Arid Zone Research, 2021, 38(2):450-459. ] | |
[25] |
Schreeg L A, Santiago L S, Wright S J, et al. Stem, root, and older leaf N: P ratios are more responsive indicators of soil nutrient availability than new foliage[J]. Ecology, 2014, 95(8):2062-2068.
pmid: 25230458 |
[26] |
Sardans J, Grau O, Chen H Y H, et al. Changes in nutrient concentrations of leaves and roots in response to global change factors[J]. Global Change Biology, 2017, 23(9):3849-3856.
doi: 10.1111/gcb.13721 pmid: 28407324 |
[27] | 孙晶, 任雯, 杜澜, 等. 不同降雨频次对粗枝猪毛菜生育期化学计量特征的影响[J]. 干旱区研究, 2021, 38(4):1094-1103. |
[ Sun Jing, Ren Wen, Du Lan, et al. Influence on stoichiometric characteristics during the growth period of Salsola subcrassa M. Pop. under different precipitation frequencies[J]. Arid Zone Research, 2021, 38(4):1094-1103. ] | |
[28] |
Huang W. Mineral elements of subtropical tree seedlings in response to elevated carbon dioxide and nitrogen addition[J]. Plos One, 2015, 3(10):e0120190, doi: 10.1371/journal.pone.0120190.
doi: 10.1371/journal.pone.0120190 |
[29] | 黄彩变, 曾凡江, 张波. 不同水氮条件下骆驼刺幼苗生长及氮效率变化特征[J]. 生态学报, 2021, 41(9):3612-3624. |
[ Huang Caibian, Zeng Fanjiang, Zhang Bo. Responses of plant growth and nitrogen efficiency of Alhagi sparsifolia seedlings to different water and nitrogen levels[J]. Acta Ecologica Sinica, 2021, 41(9):3612-3624. ] | |
[30] | 曾凡江, 张文军, 刘国军, 等. 中国典型沙漠区主要优势植被的稳定修复途径与可持续经营技术[J]. 中国科学院院刊, 2020, 35(6):709-716. |
[ Zeng Fanjiang, Zhang Wenjun, Liu Guojun, et al. Stable restoration pattern and sustainable management technology of main dominant vegetation in typical desert areas of China[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(6):709-716. ] | |
[31] | 于亚辉, 王丽娟, 王素梅, 等. 电感耦合等离子体原子发射光谱法测定白云鄂博富钾板岩中铁、钙、镁、铝和钡的含量[J]. 理化检验(化学分册), 2021, 57(8):742-745. |
[ Yu Yahui, Wang Lijuan, Wang Sumei, et al. ICP-AES determination of iron, calcium, magnesium, aluminum and barium in rich-kalium slate from Baiyunobo mine[J]. Physical Testing and Chemical Analysis Part B(Chemical Analysis), 2021, 57(8):742-745. ] | |
[32] |
Walter A, Schurr U. Dynamics of leaf and root growth: Endogenous control versus environmental impact[J]. Annals of Botany, 2005, 95(6):891-900.
pmid: 15767269 |
[33] |
Gregory V D H, Dambrine E, Pollier B, et al. Mg and Ca uptake by roots in relation to depth and allocation to aboveground tissues: Results from an isotopic labeling study in a beech forest on base-poor soil[J]. Biogeochemistry, 2015, 122(2/3):375-393.
doi: 10.1007/s10533-014-0047-2 |
[34] |
Chapin F S. The mineral nutrition of wild plants[J]. Annual Review of Ecology and Systematics, 1980, 11(1):233-260.
doi: 10.1146/ecolsys.1980.11.issue-1 |
[35] |
Julian H, Jannes J, Timothy I M, et al. Soil solution phosphorus turnover: Derivation, interpretation, and insights from a global compilation of isotope exchange kinetic studies[J]. Biogeosciences, 2018, 15(1):105-114.
doi: 10.5194/bg-15-105-2018 |
[36] |
Zhan S X, Wang Y, Zhu Z C, et al. Nitrogen enrichment alters plant N: P stoichiometry and intensifies phosphorus limitation in a steppe ecosystem[J]. Environmental and Experimental Botany, 2017, 134:21-32.
doi: 10.1016/j.envexpbot.2016.10.014 |
[37] |
Dai A G. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2013, 3(2):52-58.
doi: 10.1038/nclimate1633 |
[38] |
Niederberger J, Kohler M, Bauhus J. Distribution of phosphorus fractions with different plant availability in German forest soils and their relationship with common soil properties and foliar P contents[J]. Soil, 2019, 5(2):189-204.
doi: 10.5194/soil-5-189-2019 |
[39] |
Hessen D O, Agren G I, Anderson T R, et al. Carbon sequestration in ecosysetms: The role of stoichiometry[J]. Ecology, 2004, 85(5):1179-1192.
doi: 10.1890/02-0251 |
[40] |
吴统贵, 吴明, 刘丽, 等. 杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化[J]. 植物生态学报, 2010, 34(1):23-28.
doi: 10.3773/j.issn.1005-264x.2010.01.005 |
[ Wu Tonggui, Wu Ming, Liu Li, et al. Seasonal variations of leaf nitrogen and phosphorus stoichiometry of three herbaceous species in Hangzhou Bay coastal wetlands, China[J]. Chinese Journal of Plant Ecology, 2010, 34(1):23-28. ]
doi: 10.3773/j.issn.1005-264x.2010.01.005 |
|
[41] | 李从娟, 徐新文, 孙永强, 等. 不同生境下三种荒漠植物叶片及土壤C、N、P的化学计量特征[J]. 干旱区地理, 2014, 37(5):996-1004. |
[ Li Congjuan, Xu Xinwen, Sun Yongqiang, et al. Stoichiometric characteristics of C, N, P for three desert plants leaf and soil at different habitats[J]. Arid Land Geography, 2014, 37(5):996-1004. ] | |
[42] |
Koerselman, Willem, Meuleman, et al. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6):1441-1450.
doi: 10.2307/2404783 |
[43] | 张林琳, 刘星星, 祝亚昕, 等. 机理Ⅰ植物铁营养的吸收转运及信号调控机制研究进展[J]. 植物营养与肥料学报, 2021, 27(7):1258-1272. |
[ Zhang Linlin, Liu Xingxing, Zhu Yaxin, et al. Research progresses on iron uptake, translocation and their signaling pathways in strategy I plants[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(7):1258-1272. ] | |
[44] | 赵秋芳, 马海洋, 贾利强, 等. 植物锰转运蛋白研究进展[J]. 热带作物学报, 2019, 40(6):1245-1252. |
[ Zhao Qiufang, Ma Haiyang, Jia Liqiang, et al. Research progress on manganese transporters in plants[J]. Chinese Journal of Tropical Crops, 2019, 40(6):1245-1252. ] | |
[45] |
Niinemets Ü, Kull K. Co-limitation of plant primary productivity by nitrogen and phosphorus in a species-rich wooded meadow on calcareous soils[J]. Acta Oecologica, 2005, 28(3):345-356.
doi: 10.1016/j.actao.2005.06.003 |
[1] | 刘源,李晓晶,段玉玺,王博,王伟峰,刘宗奇,冯涛. 库布齐沙漠东部植被恢复对土壤生态化学计量的影响[J]. 干旱区研究, 2022, 39(3): 924-932. |
[2] | 侍世玲,任晓萌,张晓伟,蒙仲举,王涛. 库布齐沙漠沙枣防护林土壤养分及化学计量特征[J]. 干旱区研究, 2022, 39(2): 469-476. |
[3] | 胡亚伟,孙若修,申明爽,施政乐,刘畅,徐勤涛,刘俊廷,张建军. 晋西黄土区土地利用方式对土壤C:N:P化学计量特征及土壤理化性质的影响[J]. 干旱区研究, 2021, 38(4): 990-999. |
[4] | 桑钰,高文礼,再努尔·吐尔逊,范雪,马晓东. 干旱胁迫下AMF对多枝柽柳幼苗和疏叶骆驼刺根系生长和氮素吸收分配的影响[J]. 干旱区研究, 2021, 38(1): 247-256. |
[5] | 王飞, 郭树江, 韩福贵, 王方琳, 张卫星, 张裕年. 民勤荒漠植物叶片水分吸收性状研究[J]. 干旱区研究, 2020, 37(5): 1256-1263. |
[6] | 苏原, 罗艳, 耿凤展, 韩文轩, 朱玉梅, 李凯辉, 刘学军. 天山高寒草原植物叶片氮磷化学计量特征对氮沉降的响应 [J]. 干旱区研究, 2019, 36(2): 430-436. |
[7] | 范连连, 李耀明, Nataliia Terekhina, 马学喜, 马杰. 冷荒漠草本植物数量特征对不同水分输入和气象因子的响应 [J]. 干旱区研究, 2019, 36(1): 139-146. |
[8] | 韩章勇, 王雪芹, 杨帆, 马洋. 策勒绿洲-沙漠过渡带两个建群种阻沙能力对比研究[J]. 干旱区研究, 2013, 30(4): 659-665. |
[9] | 常运华, 刘学军, 李凯辉, 吕金岭, 宋韦. 大气氮沉降研究进展[J]. 干旱区研究, 2012, 29(6): 972-979. |
[10] | 张伟, 刘学军, 胡玉昆, 李凯辉, 沈健林, 骆晓声, 宋韦. 乌鲁木齐市区大气氮素干沉降的输入性分析[J]. 干旱区研究, 2011, 28(4): 710-716. |
|