干旱区研究 ›› 2022, Vol. 39 ›› Issue (3): 924-932.doi: 10.13866/j.azr.2022.03.26
刘源1,2(),李晓晶1,2(),段玉玺1,2,王博1,2,王伟峰1,2,刘宗奇1,2,冯涛1
收稿日期:
2021-07-20
修回日期:
2021-09-30
出版日期:
2022-05-15
发布日期:
2022-05-30
通讯作者:
李晓晶
作者简介:
刘源(1992-),女,硕士,助理研究员,主要从事林业碳汇和荒漠化防治研究. E-mail: 基金资助:
LIU Yuan1,2(),LI Xiaojing1,2(),DUAN Yuxi1,2,LI Bo1,2,WANG Weifeng1,2,LIU Zongqi1,2,FENG Tao1
Received:
2021-07-20
Revised:
2021-09-30
Online:
2022-05-15
Published:
2022-05-30
Contact:
Xiaojing LI
摘要:
为阐明植被恢复对风沙土生态化学计量特征的影响,以库布齐沙漠东段流动沙地、半固定沙地、油蒿固定沙地和沙柳固定沙地为研究对象,分析植被生物量和不同深度土层(0~60 cm)土壤C、N、P化学计量特征时空变化及其相关性。结果表明:(1) 土壤C、N含量随植被恢复明显增加,而土壤P含量增幅较小,均在沙柳固定沙地达到最大值(5.86 g·kg-1、0.41 g·kg-1、1.74 g·kg-1),各阶段土壤C、N、P含量均随土层加深逐渐降低,土壤P含量在各土层间差异较小。(2) 不同阶段或土层间土壤化学计量比差异显著,随植被恢复土壤C:N先减小后增大,而C:P和N:P均逐渐增大,土壤C:P和N:P均随土层加深逐渐减小,而C:N则无明显变化规律。(3) 土壤C、N、P两两间呈极显著正相关,均与地上和凋落物生物量呈显著正相关,土壤C:N与C:P、N:P均无显著相关关系,而土壤C:P与N:P呈显著正相关,且土壤C:P和N:P均与地上、地下和凋落物生物量呈显著正相关。综上所述,人工建植促进植被恢复可显著影响土壤C、N、P含量及化学计量特征,进而有效改善土壤理化性状,提高荒漠生态系统C、N固存能力。
刘源,李晓晶,段玉玺,王博,王伟峰,刘宗奇,冯涛. 库布齐沙漠东部植被恢复对土壤生态化学计量的影响[J]. 干旱区研究, 2022, 39(3): 924-932.
LIU Yuan,LI Xiaojing,DUAN Yuxi,LI Bo,WANG Weifeng,LIU Zongqi,FENG Tao. Effects of vegetation restoration on soil stoichiometry in the eastern Hobq Desert[J]. Arid Zone Research, 2022, 39(3): 924-932.
表1
研究区样地概况"
样地 类型 | 位置 | 恢复 措施 | 盖度/% | 优势植物 | 草本 | 灌木 | ||||
---|---|---|---|---|---|---|---|---|---|---|
株高/cm | 密度 /(株·m-2) | 株高/cm | 密度 /[株·(100m2)-1] | 冠幅/m2 | ||||||
Md | 110°46′46.41″E, 40°04′46.18″N | 无 | 3.3 | 沙蓬(Agriophyllum squarrosum)、 沙竹(Psammochloa villosa) | 9.4 | 10.0 | _ | _ | _ | |
Sf | 110°46′42.50″E, 40°04′43.73″N | 无 | 19.7 | 油蒿(Artemisia ordosica)、猪毛菜(Salsola collina) | 9.2 | 46.0 | 53.2 | 18.0 | 1.2 | |
Ar | 110°47′52.56″E, 40°04′24.22″N | 飞播 | 48.5 | 油蒿、猪毛菜、杨柴(Hedysarum mongolicum)、 | 10.5 | 68.0 | 76.8 | 87.0 | 1.5 | |
Sa | 110°46′28.34″E, 40°04′ 45.99″N | 扦插+飞播 | 60.3 | 沙柳(Salix cheilophila)、油蒿、杨柴、狗尾草(Setaria viridis) | 6.1 | 50.0 | 122.6 | 206.0 | 2.6 |
表2
不同样地植被生物量差异特征"
样地 类型 | 植物种 | 灌木茎 /(g·m-2) | 灌木叶 /(g·m-2) | 灌木根 /(g·m-2) | 草本地上部分/(g·m-2) | 草本地下部分/(g·m-2) | 凋落物 /(g·m-2) | 地上 生物量 /(g·m-2) | 地下 生物量 /(g·m-2) | 总生物量 /(g·m-2) |
---|---|---|---|---|---|---|---|---|---|---|
Md | - | - | - | 2.48±1.21b | 0.83±0.81c | - | 2.48d | 0.83d | 3.31d | |
Sf | 油蒿 | 1.24±0.20e | 1.07±0.27d | 0.92±0.30d | 14.42±4.11a | 4.62±2.37a | 10.16±0.32c | 16.73c | 5.54c | 32.43c |
Ar | 油蒿 | 121.97±51.84b | 31.22±17.95b | 34.04±10.70b | 12.36±8.63a | 3.10±2.43b | 34.89±19.87b | 203.84b | 37.14b | 275.87b |
杨柴 | 29.34±6.25c | 8.95±2.46c | 20.47±4.68b | |||||||
Sa | 沙柳 | 366.23±187.38a | 141.81±76.64a | 236.13±116.21a | 0.81±0.19b | 0.32±0.11c | 71.26±39.59a | 581.68a | 236.45a | 889.39a |
油蒿 | 44.66±7.23c | 12.68±5.05c | 27.72±5.62b | |||||||
杨柴 | 11.44±6.16d | 4.05±2.16c | 10.13±3.28c |
表3
土壤C、N、P对环境因子的响应"
指标 | 因素 | df | 均方 | F | P | 偏η2 | R2 |
---|---|---|---|---|---|---|---|
C | 植被恢复 | 3 | 4.186 | 141.409 | <0.001** | 0.930 | 0.927 |
土层深度 | 3 | 0.900 | 30.398 | <0.001** | 0.740 | ||
植被恢复×土层深度 | 9 | 0.308 | 10.421 | <0.001** | 0.746 | ||
N | 植被恢复 | 3 | 0.015 | 132.015 | <0.001** | 0.925 | 0.939 |
土层深度 | 3 | 0.008 | 66.526 | <0.001** | 0.862 | ||
植被恢复×土层深度 | 9 | 0.002 | 16.178 | <0.001** | 0.820 | ||
P | 植被恢复 | 3 | 0.022 | 87.592 | <0.001** | 0.891 | 0.910 |
土层深度 | 3 | 0.014 | 55.240 | <0.001** | 0.838 | ||
植被恢复×土层深度 | 9 | 0.002 | 6.924 | <0.001** | 0.661 |
表4
土壤C、N、P化学计量比对环境因子的响应"
指标 | 因素 | df | 均方 | F | P | 偏η2 | R2 |
---|---|---|---|---|---|---|---|
C:N | 植被恢复 | 3 | 106.406 | 17.318 | <0.001** | 0.619 | 0.608 |
土层深度 | 3 | 16.357 | 2.662 | 0.065* | 0.200 | ||
植被恢复×土层深度 | 9 | 19.024 | 3.096 | 0.009** | 0.465 | ||
C:P | 植被恢复 | 3 | 16.311 | 87.361 | <0.001** | 0.891 | 0.87 |
土层深度 | 3 | 2.497 | 13.377 | <0.001** | 0.556 | ||
植被恢复×土层深度 | 9 | 0.555 | 2.971 | 0.011 | 0.455 | ||
N:P | 植被恢复 | 3 | 0.052 | 84.467 | <0.001** | 0.888 | 0.901 |
土层深度 | 3 | 0.026 | 42.394 | <0.001** | 0.799 | ||
植被恢复×土层深度 | 9 | 0.004 | 6.887 | <0.001** | 0.660 |
表5
土壤生态化学计量特征与生物量的相关系数"
C | N | P | C:N | C:P | N:P | AGB | UGB | LB | |
---|---|---|---|---|---|---|---|---|---|
C | 1 | 0.986** | 0.995** | 0.856 | 0.996** | 0.969* | 0.976* | 0.998** | 0.939* |
N | 1 | 0.998** | 0.757 | 0.987* | 0.996** | 0.976* | 0.983* | 0.956* | |
P | 1 | 0.801 | 0.995** | 0.988* | 0.978* | 0.993** | 0.951* | ||
C:N | 1 | 0.853 | 0.704 | 0.794 | 0.862* | 0.711 | |||
C:P | 1 | 0.971* | 0.981* | 0.995** | 0.946* | ||||
N:P | 1 | 0.974* | 0.967* | 0.965* | |||||
AGB | 1 | 0.981* | 0.990** | ||||||
UGB | 1 | 0.946* |
[1] |
Sistla S A, Schimel J P. Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change[J]. New Phytologist, 2012, 196(1): 68-78.
doi: 10.1111/j.1469-8137.2012.04234.x pmid: 22924404 |
[2] |
Fan H B, Wu J P, Liu W F, et al. Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations[J]. Plant and Soil, 2015, 392(1-2): 127-138.
doi: 10.1007/s11104-015-2444-2 |
[3] | Hessen D O, Elser J J. Elements of ecology and evolution[J]. Munksgaard International Publishers, 2005, 109(1): 3-5. |
[4] |
Bastin J F, Finegold Y, Garcia C, et al. The global tree restoration potential[J]. Science, 2019, 365(6448): 76-79.
doi: 10.1126/science.aax0848 |
[5] | 刘兴诏, 周国逸, 张德强, 等. 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征[J]. 植物生态学报, 2010, 34(1): 68-75. |
[ Liu Xingzhao, Zhou Guoyi, Zhang Deqiang, et al. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 68-75. ] | |
[6] | 宁志英, 李玉霖, 杨红玲, 等. 沙化草地土壤碳氮磷化学计量特征及其对植被生产力和多样性的影响[J]. 生态学报, 2019, 39(10): 3537-3546. |
[ Ning Zhiying, Li Yulin, Yang Hongling, et al. Stoichimetry and effects of carbin, nitrogen, and phosphorus in soil of desertified grasslands on community productivity and species diversity[J]. Acta Eccologica Sinica, 2019, 39(10): 3537-3546. ] | |
[7] | 赵海燕, 张剑, 刘冬, 等. 不同沼泽湿地土壤碳氮磷生态化学计量学特征及其影响因素[J]. 干旱区研究, 2020, 37(3): 618-626. |
[ Zhao Haiyan, Zhang Jian, Liu Dong, et al. Characteristics and determining factors for ecological stoichiometry of soil carbon, nitrogen, and phosphorus in different marsh wetlands[J]. Arid Zone Reserch, 2020, 37(3): 618-626. ] | |
[8] | 高德新, 张伟, 任成杰, 等. 黄土高原典型植被恢复过程土壤与叶片生态化学计量特征[J]. 生态学报, 2019, 39(10): 3622-3630. |
[ Gao Dexing, Zhang Wei, Ren Chengjie, et al. Ecological stoichiometry characteristics of soil and leaves during the recovery process of typical vegetation on the Loess Plateau[J]. Acta Ecologica Sinica, 2019, 39(10): 3622-3630. ] | |
[9] | 饶丽仙, 沈艳, 聂明鹤. 宁夏典型草原不同退耕年限草地植物-土壤生态化学计量特征[J]. 草业学报, 2017, 26(4): 43-52. |
[ Rao Lixian, Shen Yan, Nie Minghe, et al. Effect of grassland restoration duration on plant-soil ecological stoichiometry characteristics in a typical steppe[J]. Acta Prataculturae Sinica, 2017, 26(4): 43-52. ] | |
[10] |
周日平. 中国荒漠化分区与时空演变[J]. 地球信息科学学报. 2019, 21(5): 675-687.
doi: 10.12082/dqxxkx.2019.180676 |
[ Zhou Riping. Zonation and spatiotemporal evolution of China’s desertification[J]. Journal of Geo-Information Science, 2019, 21(5): 675-687. ]
doi: 10.12082/dqxxkx.2019.180676 |
|
[11] | 淑敏, 姜涛, 王东丽, 等. 科尔沁沙地不同林龄樟子松人工林土壤生态化学计量特征[J]. 干旱区研究, 2018, 35(4): 789-795. |
[ Shu Min, Jiang Tao, Wang Dongli, et al. Soil ecological stoichiometry under the planted of Pinus sylvestris var. mongolica forests with different stand ages in the Horqin Sandy Land[J]. Arid Zone Reserch, 2018, 35(4): 789-795. ] | |
[12] |
陶冶, 张元明. 古尔班通古特沙漠4种草本植物叶片与土壤的化学计量特征[J]. 应用生态学报, 2015, 26(3): 659-665.
pmid: 26211045 |
[ Tao Ye, Zhang Yuanming. Leaf and soil stoichiometry of four herbs in the Gurbantunggut Desert[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 659-665. ]
pmid: 26211045 |
|
[13] | 刘源, 段玉玺, 王博, 等. 库布齐东段典型人工固沙林土壤水分时空变化特征[J]. 西北林学院学报, 2021, 36(1): 1-8. |
[ Liu Yuan, Duan Yuxi, Wang Bo, et al. Spatial and temporal characteristics of soil moisture in typical sand fixation plantations in the eastern Hobq[J]. Journal of Northwest Forestry University, 2021, 36(1): 1-8. ] | |
[14] |
王博, 段玉玺, 王伟峰, 等. 库布齐东缘沙漠化逆转过程中土壤呼吸及其温度敏感性变化[J]. 应用生态学报, 2020, 31(1): 104-112.
doi: 10.13287/j.1001-9332.202001.005 pmid: 31957386 |
[ Wang Bo, Duan Yuxi, Wang Weifeng, et al. Variations of soil respiration and its temperature sensitivity in the reversion process of desertification in the eastern Hobq Desert[J]. Chinese Journal of Applied Ecology, 2020, 31(1): 104-112. ]
doi: 10.13287/j.1001-9332.202001.005 pmid: 31957386 |
|
[15] | 郝文芳, 陈存根, 梁宗锁, 等. 植被生物量的研究进展[J]. 西北农林科技大学学报(自然科学版), 2008, 36(2): 175-182. |
[ Hao Wenfang, Chen Cungen, Liang Zongsuo, et al. Research advances in vegetation biomass[J]. Journal of Northwest A & F University(Naturnal Science Edition), 2008, 36(2): 175-182. ] | |
[16] |
苏永中, 张铜会, 赵哈林, 等. 科尔沁沙地不同年代小叶锦鸡儿人工林植物群落特征及其土壤特性[J]. 植物生态学报, 2004, 28(1): 93-100.
doi: 10.17521/cjpe.2004.0014 |
[ Su Yongzhong, Zhang Tonghui, Zhao Halin, et al. Characteristics of plant community and soil properties in the plantation chronosequence of Caragana Microphylla in Horqin Sandy Land[J]. Acta Phytoecologica Sinica, 2004, 28(1): 93-100. ]
doi: 10.17521/cjpe.2004.0014 |
|
[17] | 钱洲, 俞元春, 俞小鹏, 等. 毛乌素沙地飞播造林植被恢复特征及土壤性质变化[J]. 中南林业科技大学学报, 2014, 34(4): 102-107. |
[ Qian Zhou, Yu Yuanchun, Yu Xiaopeng, et al. Changes of vegetation characteristics and soil properties in Mu Us Sandy Land by aerial seeding afforestation[J]. Journal of Central South University of Forestry & Technology, 2014, 34(4): 102-107. ] | |
[18] | 宋朝枢. 乌拉特梭梭林自然保护区科学考察集[M]. 北京: 中国林业出版社, 2000. |
[ Song Chaoshu. Scientific Servey of Wulate Haloxylon Ammodendron Forst Nature Reserve[M]. Beijing: China Forestry Press, 2000. ] | |
[19] |
王春玲, 郭泉水, 谭德远, 等. 准噶尔盆地东南缘不同生境条件下梭梭群落结构特征研究[J]. 应用生态学报, 2005, 16(7): 1224-1229.
pmid: 16252856 |
[ Wang Chunling, Guo Quanshui, Tan Deyuan, et al. Haloxylon ammodendron community patterns in different habitats along southeastern edge of Zhunger Basin[J]. Chinese Journal of Applied Ecology, 2005, 16(7): 1224-1229. ]
pmid: 16252856 |
|
[20] |
Li C P, Xiao C W. Above-and belowground biomass of ArtemisiaorDosica communities in three contrasting habitats of the Mu Us Desert, northern China[J]. Journal of Arid Environments, 2007, 70(2): 195-207.
doi: 10.1016/j.jaridenv.2006.12.017 |
[21] | Comstock J. Ecological communities and processes in a mojave desert ecosystem, Rock Valley, Nevada[J]. Trends in Ecology & Evolution, 1996, 11(12): 524-525. |
[22] | Havstad K M, Huenneke L F, Schlesinger W H. Structure and Function of a Chihuahuan Desert Ecosystem[M]. New York: Oxford University Press, 2006. |
[23] | Houghton R A, Hall F, Goetz S J. Importance of biomass in the global carbon cycle[J]. Journal of Geophysical Research, 2009, 114 (3): 1-13. |
[24] |
Gao Y, He N P, Yu G R, et al. Long-term effects of different land use trpes on C, N, and P stoichiometry and storage in subtropical ecosystems: A case study in China[J]. Ecological Engineering, 2014, 67(1): 171-181.
doi: 10.1016/j.ecoleng.2014.03.013 |
[25] |
Harris W N, Moretto A S, Distel R A, et al. Fire and grazing in grasslands of the Argentine Caldenal: Effects on plant and soil carbon and nitrogen[J]. Acta Oecologica, 2007, 32(2): 207-214.
doi: 10.1016/j.actao.2007.05.001 |
[26] | 王博, 段玉玺, 王伟峰, 等. 库布齐东段不同植被恢复阶段荒漠生态系统碳氮储量及分配格局[J]. 生态学报, 2019, 39(7): 2470-2480. |
[ Wang Bo, Duan Yuxi, Wang Weifeng, et al. Carbon and nitrogen storage and distribution patterns of desert ecosystems at different vegetation restoration stages in the eastern Hobq Desert[J]. Acta Ecologica Sinica, 2019, 39(7): 2470-2480. ] | |
[27] | 李尝君, 曾凡江, 郭京衡, 等. 植被恢复程度与沙地土壤性质--以塔克拉玛干沙漠南缘为例[J]. 干旱区研究, 2015, 32(6): 1061-1067. |
[ Li Changjun, Zeng Fanjiang, Guo Jingheng, et al. Soil properties of different sandylands under different vegetation recovering levels: A case in southern Taklimakan Desert[J]. Arid Zone Reserch, 2015, 32(6): 1061-1067. ] | |
[28] | 刘建康. 毛乌素沙地油蒿群落退化与封育恢复特征及机制研究[D]. 北京: 北京林业大学, 2019. |
[ Liu Jiankang.Study on Characteristics and Mechanisms of Degradation and Enclosure Restoration about Artemisia ordosica Community in Mu Us Desert[D]. Beijing: Beijing Forestry University, 2019. ] | |
[29] | 董正武, 玉米提·哈力克, 李生宇, 等. 古尔班通古特沙漠西南缘柽柳沙包的土壤化学计量特征[J]. 生态学报, 2020, 40(20): 7389-7400. |
[ Dong Zhengwu, Umut Halik, Li Shengyu, et al. Soil stoichiometric characteristics of Tamarix cones in the southwest margin of Gurbantunggut Desert[J]. Acta Ecologica Sinica, 2020, 40(20): 7389-7400. ] | |
[30] | Shuai O Y, Xiang W H, Gou M M, et al. Variations in soil carbon, nitrogen, phosphorus and stoichiometry along forest succession in southern China[J]. Biogeosciences Discussions, 2017, 10(8): 1-27. |
[31] | 刘进辉, 王雪芹, 马洋. 沙漠绿洲过渡带柽柳灌丛沙堆-丘间地系统土壤养分空间异质性[J]. 生态学报, 2016, 36(4): 979-990. |
[ Liu Jinhui, Wang Xueqin, Ma Yang. Spatial variation of soil nutrients of Tamarix ramosissima nebkhas and interdune areas in a desert-oasis ecotone[J]. Acta Ecologica Sinica, 2016, 36(4): 979-990. ] | |
[32] | 董雪, 辛智鸣, 黄雅茹, 等. 乌兰布和沙漠典型灌木群落土壤化学计量特征[J]. 生态学报, 2019, 39(17): 6247-6256. |
[ Dong Xue, Xin Zhimin, Huang Yaru, et al. Soil stoichiometry in typical shrub communities in the Ulan Buh Desert[J]. Acta Ecologica Sinica, 2019, 39(17): 6247-6256. ] | |
[33] | 陶冶, 吴甘霖, 刘耀斌, 等. 古尔班通古特沙漠典型灌木群落土壤化学计量特征及其影响因素[J]. 中国沙漠, 2017, 37(2): 305-314. |
[ Tao Ye, Wu Ganlin, Liu Yaobin, et al. Soil stoichiometry and their influencing factors in typical shrub communities in the Gurbantunggut Desert, China[J]. Journal of Desert Research, 2017, 37(2): 305-314. ] | |
[34] | 周晓兵, 陶冶, 吴林, 等. 塔克拉玛干沙漠南缘荒漠绿洲过渡带不同土地利用影响下土壤化学计量特征[J]. 生态学报, 2019, 39(3): 969-980. |
[ Zhou Xiaobing, Tao Ye, Wu Ling, et al. Soil stoichiometry in different land-use categories in desert-oasis ecotones of the southern Taklimakan Desert[J]. Acta Ecologica Sinica, 2019, 39(3): 969-980. ] | |
[35] |
Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data[J]. Biogeochemistry, 2010, 98(1-3): 139-151.
doi: 10.1007/s10533-009-9382-0 |
[36] |
An H, Li G Q. Effects of grazing on carbon and nitrogen in plants and soils in a semiarid desert grassland, China[J]. Journal of Arid Land, 2015, 7(3): 341-349.
doi: 10.1007/s40333-014-0049-x |
[37] | 赵志强. 鄂尔多斯几种沙生植物根际自身固氮菌的筛选及对杨柴接种效应研究[D]. 成都: 四川农业大学, 2008. |
[ Zhao Zhiqiang. andIsolation of Nitrogen Fixing Bacteria Study on Effects of Inoculation with Hedysarum fruticosum var. mongolicum in Erdos[D]. Chengdu: Sichuan Agricultural University, 2008. ] | |
[38] |
Cleveland C C, Liptzin D. C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass[J]. Biogeochemistry, 2007, 85(3): 235-252.
doi: 10.1007/s10533-007-9132-0 |
[39] | 张珂, 苏永中, 王婷, 等. 荒漠绿洲区不同种植年限人工梭梭林土壤化学计量特征[J]. 生态学报, 2016, 36(11):3235-3243. |
[ Zhang Ke, Su Yongzhong, Wang Ting, et al. Soil stoichiometry characteristics of Haloxylon ammodendron with different plantation age in the desert-oasis ecotone, North China[J]. Acta Ecologica Sinica, 2016, 36(11):3235-3243. ] |
[1] | 李敏, 孙杰, 陈雪, 刘佳庆. 荒漠植物叶片-土壤化学计量及植物内稳态特征[J]. 干旱区研究, 2024, 41(1): 104-113. |
[2] | 李永广, 苑广辉. 青海湖流域不同下垫面类型对地表温度的生物物理影响[J]. 干旱区研究, 2024, 41(1): 24-35. |
[3] | 曹秭琦, 路战远, 任永峰, 赵小庆, 王建国, 侯智慧, 韩云飞, 王登云, 尚学燕, 段锐. 不同施氮水平对油莎豆农田土壤养分表观平衡和块茎产量的影响[J]. 干旱区研究, 2024, 41(1): 71-79. |
[4] | 庞晔,袁建钰,闫丽娟,杜梦寅,李广. 保护性耕作对黄土高原旱作麦田土壤氮矿化的影响[J]. 干旱区研究, 2023, 40(9): 1446-1456. |
[5] | 周静,孙永峰,丁杰萍,白浩江,马祥,王旭洋,罗永清. 退化沙质草地恢复过程中植被生物量变化及其与土壤碳的关系[J]. 干旱区研究, 2023, 40(9): 1457-1464. |
[6] | 孙丹阳,魏建新,杨辽,王杰,唐宇琪,巴比尔江·迪力夏提. 深度学习方法下GEDI数据的天然云杉林地上生物量反演[J]. 干旱区研究, 2023, 40(9): 1472-1483. |
[7] | 马继龙, 史军辉, 王新英, 阿丽亚·拜都热拉, 刘茂秀, 艾吉尔·阿不拉. 洪水漫溢对塔里木河中游河岸胡杨林土壤有机碳及活性组分的影响[J]. 干旱区研究, 2023, 40(8): 1248-1257. |
[8] | 李小雨, 贾科利, 魏慧敏, 陈睿华, 王怡婧. 基于随机森林算法的土壤含盐量预测[J]. 干旱区研究, 2023, 40(8): 1258-1267. |
[9] | 冀明欣, 冯天骄, 肖辉杰, 辛智鸣, 李俊然, 王栋. 河套灌区不同配置农田防护林对田间土壤水分和养分储量的影响[J]. 干旱区研究, 2023, 40(8): 1268-1279. |
[10] | 李健男, 史海滨, 苗庆丰, 珊丹, 荣浩, 温雅琴. 环境因子对不同种类人工乔木林分蒸腾耗水的影响[J]. 干旱区研究, 2023, 40(8): 1312-1321. |
[11] | 鲁元波, 严成, 宋春武, 李雅娟, 来赪雲. 天山南坡山前荒漠草地植物群落分布对环境因子的响应——以拜城县为例[J]. 干旱区研究, 2023, 40(8): 1346-1357. |
[12] | 海龙, 周梅, 张嘉開, 洪光宇, 李凤滋, 费菲. 毛乌素沙地不同林龄杨柴灌木林土壤呼吸及其影响因素[J]. 干旱区研究, 2023, 40(7): 1107-1116. |
[13] | 张颂安, 刘轩, 赵珮杉, 高广磊, 张英, 丁国栋, 柳叶, 任悦. 呼伦贝尔沙地樟子松人工林土壤细菌网络特征[J]. 干旱区研究, 2023, 40(6): 905-915. |
[14] | 关宇淇, 李广, 潘雪, 徐国荣, 魏星星, 刘昊, 吴江琪. 降雨频率对甘南尕海湿草甸土壤碳氮磷化学计量特征的影响[J]. 干旱区研究, 2023, 40(6): 916-925. |
[15] | 姚春艳, 刘洪鹄, 刘竞. 长江源区1980—2020年水沙变化规律[J]. 干旱区研究, 2023, 40(5): 726-736. |
|