干旱区研究 ›› 2024, Vol. 41 ›› Issue (1): 92-103.doi: 10.13866/j.azr.2024.01.09 cstr: 32277.14.j.azr.2024.01.09
收稿日期:
2023-05-15
修回日期:
2023-08-24
出版日期:
2024-01-15
发布日期:
2024-01-24
作者简介:
颜巧芳(1998-),女,硕士研究生,主要从事荒漠植物生理生态研究. E-mail: 基金资助:
YAN Qiaofang(),SHAN Lishan(),XIE Tingting,WANG Hongyong,SHI Yating
Received:
2023-05-15
Revised:
2023-08-24
Published:
2024-01-15
Online:
2024-01-24
摘要:
探究荒漠植物叶片和根系形态特征对干旱胁迫的响应,有助于理解和预测气候变化条件下荒漠植物的生长调控策略。本研究以典型荒漠植物珍珠柴(Caroxylon passerinum)幼苗为研究对象,设置慢速干旱和快速干旱两种处理,测定叶片和根系相关的形态指标,分析了珍珠柴幼苗在不同干旱胁迫下叶片和根系的形态特征及两者之间的关系。结果表明:(1)随干旱胁迫时间延长,两种处理下的粗根直径减小,快速干旱处理的细根比根长、比根面积均减小,而快速干旱处理的叶组织密度增加,慢速干旱处理后粗根组织密度整体增大,而快速干旱处理则呈先增后减。(2)生长末期(54 d),两种处理下的粗根直径显著下降,快速干旱处理的肉质化程度和含水量分别显著低于对照和慢速干旱处理,胁迫37 d时,两种干旱处理下的珍珠柴粗根组织密度显著增大,并且慢速干旱大于快速干旱。(3)粗根比根长、粗根组织密度、细根比根长、比叶面积是珍珠柴性状变异的主要指标,相关性分析发现,珍珠柴叶片和根系共有29对性状之间相关联。综上所述,珍珠柴叶片、粗根、细根在不同水分处理下均表现出不同的适应策略,在两种干旱处理下珍珠柴通过减小粗根直径响应干旱胁迫。在快速干旱条件下,珍珠柴通过增大叶组织密度,减小细根比根长和比根面积等适应土壤水分亏缺。珍珠柴通过叶片、根系性状内部,叶片与根系性状之间的协同或权衡策略适应干旱。
颜巧芳, 单立山, 解婷婷, 王红永, 师亚婷. 珍珠柴幼苗叶片和根系形态特征对干旱胁迫的响应[J]. 干旱区研究, 2024, 41(1): 92-103.
YAN Qiaofang, SHAN Lishan, XIE Tingting, WANG Hongyong, SHI Yating. Morphological characteristics of the leaves and roots of Caroxylon passerinum seedlings in response to drought-induced stress[J]. Arid Zone Research, 2024, 41(1): 92-103.
表1
干旱胁迫强度和胁迫时间对珍珠柴幼苗叶片性状的重复测量方差分析"
性状 | 干旱强度 | 干旱时间 | 交互作用 |
---|---|---|---|
肉质化程度/(g·g-1) | 0.207 | 21.456** | 1.844 |
叶片含水量/% | 3.944* | 16.404** | 5.385** |
比叶面积/(cm2·g-1) | 0.543 | 1.181 | 1.434 |
叶组织密度/(g·cm-3) | 0.155 | 1.753 | 1.805 |
粗根比根长/(cm·g-1) | 4.405* | 12.653** | 2.979 |
粗根比根面积/(cm2·g-1) | 8.380** | 9.602** | 1.119 |
粗根组织密度/(g·cm-3) | 8.498** | 18.124** | 2.047 |
粗根直径/mm | 1.292 | 3.258 | 7.588** |
细根比根长/(cm·g-1) | 6.424** | 29.991** | 7.112** |
细根比根面积/(cm2·g-1) | 20.576 | 22.702** | 5.228** |
细根组织密度/(g·cm-3) | 6.594* | 114.10** | 41.609** |
细根直径/mm | 25.939** | 49.613** | 9.015** |
表2
主成分载荷矩阵"
PC1 | PC2 | PC3 | PC4 | |
---|---|---|---|---|
肉质化程度 | 0.409 | -0.150 | 0.125 | 0.070 |
叶片含水量 | 0.365 | -0.237 | 0.231 | -0.105 |
比叶面积 | 0.215 | -0.331 | -0.087 | 0.545 |
叶组织密度 | -0.259 | 0.416 | -0.133 | -0.342 |
粗根比根长 | 0.279 | 0.503 | 0.035 | 0.255 |
粗根比根面积 | 0.353 | 0.063 | -0.338 | -0.129 |
粗根组织密度 | 0.282 | 0.503 | 0.105 | 0.187 |
粗根直径 | 0.364 | 0.013 | -0.286 | -0.276 |
细根比根长 | -0.252 | -0.221 | -0.539 | 0.099 |
细根比根面积 | -0.279 | 0.205 | 0.231 | 0.393 |
细根组织密度 | -0.044 | -0.182 | 0.590 | -0.331 |
细根直径 | -0.168 | -0.065 | 0.073 | 0.322 |
贡献率/% | 36.868 | 15.645 | 13.826 | 12.406 |
累积贡献率/% | 36.868 | 52.512 | 66.338 | 78.744 |
[1] | 夏振华, 陈亚宁, 朱成刚, 等. 干旱胁迫环境下的胡杨叶片气孔变化[J]. 干旱区研究, 2018, 35(5): 1111-1117. |
[Xia Zhenhua, Chen Yaning, Zhu Chenggang, et al. Stomatal changes in leaves of Populus euphratica under drought stress[J]. Arid Zone Research, 2018, 35(5): 1111-1117.] | |
[2] |
Liu L B, Gudmundsson L, Hauser M, et al. Soil moisture dominates dryness stress on ecosystem production globally[J]. Nature Communications, 2020, 11(1): 4892.
doi: 10.1038/s41467-020-18631-1 pmid: 32994398 |
[3] | 黄文琳, 张强, 孔冬冬, 等. 1982—2013年内蒙古地区植被物候对干旱变化的响应[J]. 生态学报, 2019, 39(13): 4953-4965. |
[Huang Wenlin, Zhang Qiang, Kong Dongdong, et al. Response of vegetation phenology to drought changes in Inner Mongolia from 1982 to 2013[J]. Acta Ecologica Sinica, 2019, 39(13): 4953-4965.] | |
[4] | 刘莹, 盖钧镒, 吕彗能. 作物根系形态与非生物胁迫耐性关系的研究进展[J]. 植物遗传资源学报, 2003, 4(3): 265-269. |
[Liu Ying, Gai Junyi, Lv Huineng. Advances of the relationship between crop root morphology and abiotic stress tolerance to antibiotic stress[J]. Journal of Plant Genetic Resources, 2003, 4(3): 265-269.] | |
[5] |
马剑英, 方向文, 夏敦胜, 等. 荒漠植物红砂叶片元素含量与气候因子的关系[J]. 植物生态学报, 2008, 32(4): 848-857.
doi: 10.3773/j.issn.1005-264x.2008.04.013 |
[Ma Jianying, Fang Xiangwen, Xia Dunsheng, et al. Relationship between element contents in leaves of desert plant Reaumuria soongorica and climatic factors[J]. Chinese Journal of Plant Ecology, 2008, 32(4): 848-857.]
doi: 10.3773/j.issn.1005-264x.2008.04.013 |
|
[6] |
Dai A. Drought under global warming: A review[J]. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2(1): 45-65.
doi: 10.1002/wcc.v2.1 |
[7] |
Fang Y J, Xiong L Z. General mechanisms of drought response and their application in drought resistance improvement in plants[J]. Cellular and Molecular Life Sciences, 2015, 72(4): 673-689.
doi: 10.1007/s00018-014-1767-0 pmid: 25336153 |
[8] | 张盼盼, 慕芳, 宋慧, 等. 糜子叶片解剖结构与其抗旱性关联研究[J]. 农业机械学报, 2013, 44(5): 119-126. |
[Zhang Panpan, Mu Fang, Song Hui, et al. Anatomical structure and drought resistance in broomcorn millet leaf[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(5): 119-126.] | |
[9] | 闫小莉, 戴腾飞, 邢长山, 等. 水肥耦合对欧美108杨幼林表土层细根形态及分布的影响[J]. 生态学报, 2015, 35(11): 3692-3701. |
[Yan Xiaoli, Dai Tengfei, Xing Changshan, et al. Coupling effect of water and nitrogen on the morphology and distribution of fine root in surface soil layer of young Populus x canadensis plantation[J]. Acta Ecologica Sinica, 2015, 35(11): 3692-3701.] | |
[10] | 蔡丽平, 吴鹏飞, 侯晓龙, 等. 类芦根系对不同强度干旱胁迫的形态学响应[J]. 中国农学通报, 2012, 28(28): 44-48. |
[Cai Liping, Wu Pengfei, Hou Xiaolong, et al. Morphological responses to different drought stress in the roots of Neyraudia reynaudiana[J]. Chinese Agricultural Science Bulletin, 2012, 28(28): 44-48.] | |
[11] | 赵忠, 李鹏. 渭北黄土高原主要造林树种根系分布特征及抗旱性研究[J]. 水土保持学报, 2002, 16(1): 96-99, 107. |
[Zhao Zhong, Li Peng. Researches on vertical root distributions and drought resistance of main planting tree species in Weibei Loess Plateau[J]. Journal of Soil and Water Conservation, 2002, 16(1): 96-99, 107.] | |
[12] | 韦柳端. 北京石质山地主要景观树种根系功能性状对干瘠环境的适应[D]. 北京: 北京林业大学, 2021. |
[Wei Liuduan. Adaptation of Root Functional Traits of Main Landscape Tree Species in Rocky Mountain Area of Beijing to Dry and Barren Environment[D]. Beijing: Beijing Forestry University, 2021.] | |
[13] |
Withington J M, Reich P B, Oleksyn J, et al. Comparisons of structure and life span in roots and leaves among temperate trees[J]. Ecological Monographs, 2006, 76(3): 381-397.
doi: 10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2 |
[14] |
Ordoniez J C, Van Bodegom P M, Witte J P M, et al. A global study of relationships between leaf traits climate and soil measures of nutrient fertility[J]. Global Ecology and Biogeography, 2009, 18(2): 137-149.
doi: 10.1111/geb.2009.18.issue-2 |
[15] |
何芸雨, 郭水良, 王喆. 植物功能性状权衡关系的研究进展[J]. 植物生态学报, 2019, 43(12): 1021-1035.
doi: 10.17521/cjpe.2019.0122 |
[He Yunyu, Guo Shuiliang, Wang Zhe. Research progress of trade-off relationships of plant functional traits[J]. Chinese Journal of Plant Ecology, 2019, 43(12): 1021-1035.]
doi: 10.17521/cjpe.2019.0122 |
|
[16] |
贾喆亭, 杨九艳, 孙艳霞, 等. 阿拉善高原珍珠猪毛菜(Salsola passerina)种群空间分布格局[J]. 中国沙漠, 2021, 41(1): 119-128.
doi: 10.7522/j.issn.1000-694X.2020.00041 |
[Jia Zheting, Yang Jiuyan, Sun Yanxia, et al. Spatial distribution pattern of Salsola passerina population in Alashan Plateau[J]. Journal of Desert Research, 2021, 41(1): 119-128.]
doi: 10.7522/j.issn.1000-694X.2020.00041 |
|
[17] |
田艳丽, 种培芳, 陆文涛, 等. 模拟氮沉降和降水变化对红砂(Reaumuria soongorica)、珍珠猪毛菜(Salsola passerina)生理的影响[J]. 中国沙漠, 2021, 41(3): 165-173.
doi: 10.7522/j.issn.1000-694X.2021.00003 |
[Tian Yanli, Chong Peifang, Lu Wentao, et al. Effects of simulated nitrogen settlement and precipitation changes on physiology characteristics of Reaumuria soongorica and Salsola passerina[J]. Journal of Desert Research, 2021, 41(3): 165-173.]
doi: 10.7522/j.issn.1000-694X.2021.00003 |
|
[18] | 李善家, 苏培玺, 张海娜, 等. 荒漠植物叶片水分和功能性状特征及其相互关系[J]. 植物生理学报, 2013, 49(2): 153-160. |
[Li Shanjia, Su Peixi, Zhang Haina, et al. Characteristics and relationships of foliar water and leaf functional traits of desert plant[J]. Plant Physiology Journal, 2013, 49(2): 153-160.] | |
[19] |
Eller C B, Lima A L, Oliveira R S, et al. Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change[J]. The New Phytologist, 2016, 211(2): 489-501.
doi: 10.1111/nph.2016.211.issue-2 |
[20] | 李镯. 吉兰泰盐湖周边典型荒漠植物叶片性状及养分回收特征[D]. 呼和浩特: 内蒙古农业大学, 2021. |
[Li Zhuo. Leaf Characteristics and Nutrient Recovery Characteristics of Typical Desert Plants Around Jilantai Salt Lake[D]. Hohhot: Inner Mongolia Agricultural University, 2021.] | |
[21] | 赵广兴, 徐天渊, 李王成, 等. 白茎盐生草幼苗对干旱胁迫的响应研究[J]. 干旱区资源与环境, 2021, 35(4): 195-202. |
[Zhao Guangxing, Xu Tianyuan, Li Wangcheng, et al. Response of Halogeton arachnoideus seedlings to drought stress[J]. Journal of Arid land Resources and Environment, 2021, 35(4): 195-202.] | |
[22] | 李瑞, 单立山, 解婷婷, 等. 典型荒漠灌木叶片功能性状特征随降水梯度的变化研究[J]. 干旱区研究, 2023, 40(3): 425-435. |
[Li Rui, Shan Lishan, Xie Tingting, et al. Variation in the leaf functional traits of typical desert shrubs under precipitation gradient[J]. Arid Zone Research, 2023, 40(3): 425-435.] | |
[23] | 刘远瞻, 徐晓, 刘浩, 等. 中国滨海盐沼互花米草和芦苇叶片功能性状的纬度梯度变异[J]. 复旦学报(自然科学版), 2020, 59(4): 381-389. |
[Liu Yuanzhan, Xu Xiao, Liu Hao, et al. Latitude gradient variation of leaf functional traits of Spartina alternifora and Phragmites australis along the coastal saltmarshes of China[J]. Journal of Fudan University (Natural Science), 2020, 59(4): 381-389.] | |
[24] | 李红, 喻阳华, 龙健, 等. 顶坛花椒叶片功能性状对早衰的响应[J]. 生态学杂志, 2021, 40(6): 1695-1704. |
[Li Hong, Yu Yanghua, Long Jian, et al. Responses of leaf functional traits of Zanthoxylum planispinum var. dintanensis to premature senescence[J]. Chinese Journal of Ecology, 2021, 40(6): 1695-1704.] | |
[25] | 张曦, 王振南, 陆姣云, 等. 紫花苜蓿叶性状对干旱的阶段性响应[J]. 生态学报, 2016, 36(9): 2669-2676. |
[Zhang Xi, Wang Zhennan, Lu Jiaoyun, et al. Response of leaf traits to drought at different growth stages of Medicago sativa[J]. Acta Ecologica Sinica, 2016, 36(9): 2669-2676.] | |
[26] |
Craine J M, Froehle J, Tilman D G, et al. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients[J]. Oikos, 2001, 93(2): 274-285.
doi: 10.1034/j.1600-0706.2001.930210.x |
[27] |
Shipley B, Vu T T. Dry matter content as a measure of dry concentration in their parts[J]. New Phytologist, 2002, 153(2): 359-364.
doi: 10.1046/j.0028-646X.2001.00320.x |
[28] | 许敏. 喀斯特石漠化生境质量与林灌草多样性修复研究[D]. 贵阳: 贵州师范大学, 2019. |
[Xu Min. Study on Habitat Quality and Restoration of Forrst-shrub-grass Diversity[D]. Guiyang: Guizhou Normal University, 2019.] | |
[29] |
刘佳, 项文化, 徐晓, 等. 湖南会同5个亚热带树种的细根构型及功能特征分析[J]. 植物生态学报, 2010, 34(8): 938-945.
doi: 10.3773/j.issn.1005-264x.2010.08.006 |
[Liu Jia, Xiang Wenhua, Xu Xiao, et al. Analysis of architecture and functions of fine roots of five subtropical tree species in Huitong, Hunan Province, China[J]. Chinese Journal of Plant Ecology, 2010, 34(8): 938-945.]
doi: 10.3773/j.issn.1005-264x.2010.08.006 |
|
[30] |
Bauhus J, Khanna P K, Menden N. Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia meansii[J]. Canadian Journal of Forest Research, 2000, 30(12): 1886-1894.
doi: 10.1139/x00-141 |
[31] | 单立山. 西北典型荒漠植物根系形态结构和功能及抗旱生理研究[D]. 兰州: 甘肃农业大学, 2013. |
[Shan Lishan. Studies on Morphological and Function of Root of Typical Desert Plant and Its Drought-resistant Physiology Characteristics on Northwest China[D]. Lanzhou: Gansu Agricultural University, 2013.] | |
[32] |
李帅, 赵国靖, 徐伟洲, 等. 白羊草根系形态特征对土壤水分阶段变化的响应[J]. 草业学报, 2016, 25(2): 169-177.
doi: 10.11686/cyxb2015171 |
[Li Shuai, Zhao Guojing, Xu Weizhou, et al. Responses of old world Bothriochloa ischcemum root systems to changes in soil water conditons[J]. Acta Prataculturae Sinica, 2016, 25(2): 169-177.]
doi: 10.11686/cyxb2015171 |
|
[33] |
黄海霞, 杨琦琦, 崔鹏, 等. 裸果木幼苗根系形态和生理特征对水分胁迫的响应[J]. 草业学报, 2021, 30(1): 197-207.
doi: 10.11686/cyxb2020057 |
[Huang Haixia, Yang Qiqi, Cui Peng, et al. Changes in morphological and physiological characteristics of Gymnocarpos przewalskii roots in response to water stress[J]. Acta Prataculturala Sinica, 2021, 30(1): 197-207.]
doi: 10.11686/cyxb2020057 |
|
[34] | 孙佳, 夏江宝, 董波涛, 等. 黄河三角洲滨海滩涂不同密度柽柳林的根系形态及生长特征[J]. 生态学报, 2021, 41(10): 3775-3783. |
[Sun Jia, Xia Jiabao, Dong Botao, et al. Root morphology and growth characteristics of Tamarix chinensis with different densities on the beach of the Yellow River Delta[J]. Acta Ecologica Sinica, 2021, 41(10): 3775-3783.] | |
[35] |
Eissenstat D M, Caldwell M M. Competitive ability is linked to rates of water extraction: A field study of two aridland tussock grasses[J]. Oecologia, 1988, 75(1): 1-7.
doi: 10.1007/BF00378806 pmid: 28311826 |
[36] | 孙婧珏. 两种生境下15种木本植物叶和细根功能性状的差异[D]. 哈尔滨: 东北林业大学, 2020. |
[Sun Jingjue. Variations of Leaf and Fine Root Functional Traits of 15 Woody Species in Two Habitats[D]. Harbin: Northeast Forestry University, 2020.] | |
[37] |
戚德辉, 温仲明, 杨士梭, 等. 基于功能性状的铁杆蒿对环境变化的响应与适应[J]. 应用生态学报, 2015, 26(7): 1921-1927.
pmid: 26710616 |
[Qi Dehui, Wen Zhongming, Yang Shisuo, et al. Trait-based responses and adaptation of Artemisia sacrorum to environmental changes[J]. Chinese Journal of Applied Ecology, 2015, 26(7) 1921-1927.]
pmid: 26710616 |
|
[38] | 王豪杰, 侯月爽, 陈静, 等. 干旱胁迫对白花泡桐幼苗根、叶形态特征和生理变化的影响[J]. 河南农业大学学报, 2023, 57(5): 784-793. |
[Wang Haojie, Hou Yueshuang, Chen Jing, et al. Effects of drought stress on root and leaf morphological characteristics phyological changes in Paulownia fortunei seedlings[J]. Journal of Henan Agricultural University, 2023, 57(5): 784-793.] | |
[39] |
马晓东, 朱成刚, 李卫红. 多枝柽柳幼苗根系形态及生物量对不同灌溉处理的响应[J]. 植物生态学报, 2012, 36(10): 1024-1032.
doi: 10.3724/SP.J.1258.2012.01024 |
[Ma Xiaodong, Zhu Chenggang, Li Weihong. Response of root morphology and biomass of Tamarix ramosissima seedlings to different water irrigations[J]. Chinese Journal of Plant Ecology, 2012, 36(10): 1024-1032.]
doi: 10.3724/SP.J.1258.2012.01024 |
|
[40] | 张金菊, 郭有燕, 田青, 等. 黑果枸杞根系构型对干旱胁迫的响应机制[J]. 南方农业学报, 2022, 53(8): 2215-2223. |
[Zhang Jinju, Guo Youyan, Tian Qing, et al. Response mechanism of Lycium ruthenicum root architecture to drought stress[J]. Journal of Southern Agriculture, 2022, 53(8): 2215-2223.] | |
[41] | 吴敏, 张文辉, 周建云, 等. 干旱胁迫对栓皮栎幼苗细根的生长与生理生化指标的影响[J]. 生态学报, 2014, 34(15): 4223-4233. |
[Wu Min, Zhang Wenhui, Zhou Jianyun, et al. Effects of drought stress on growth, physiological and biochemical parameters in fine roots of Quercus variabilis seedlings[J]. Acta Ecologica Sinica, 2014, 34(15): 4223-4233.] | |
[42] |
周洁, 杨晓东, 王雅芸, 等. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076.
doi: 10.17521/cjpe.2021.0338 |
[Zhou Jie, Yang Xiaodong, Wang Yayun, et al. Differences in adaptation strategy of Haloxylon ammodendron and Alhagi sparsifolia to drought[J]. Chinese Journal of Plant Ecology, 2022, 46(9): 1064-1076.]
doi: 10.17521/cjpe.2021.0338 |
|
[43] | 王世琪, 刘金彪, 康继月, 等. 水分和磷处理对建植当年柳枝稷根系生长和形态特征的影响[J]. 草业科学, 2019, 36(8): 2096-2104. |
[Wang Shiqi, Liu Jinbiao, Kang Jiyue, et al. Effects of water and phosphorus treatments on root growth and morphological characteristics of switchgrass in the establishment year[J]. Pratacultural Sciences, 2019, 36(8): 2096-2104.] | |
[44] | 施宇, 温仲明, 龚时慧. 黄土丘陵区植物叶片与细根功能性状关系及其变化[J]. 生态学报, 2011, 31(22): 6805-6814. |
[Shi Yu, Wen Zhongming, Gong Shihui. Comparisons of relationships between leaf and fine root traits in hilly area of the Loess Plateau, Yanhe River Basin, Shaanxi Province, China[J]. Acta Ecologica Sinica, 2011, 31(22): 6805-6814.] | |
[45] |
马丽, 单立山, 解婷婷, 等. 基于同质园实验的两种典型荒漠植物叶片功能性状变异研究[J]. 草地学报, 2022, 30(3): 701-711.
doi: 10.11733/j.issn.1007-0435.2022.03.023 |
[Ma Li, Shan Lishan, Xie Tingting, et al. Variation in plant functional traits of two typical desert based on common garden experiment[J]. Acta Agrestia Sinica, 2022, 30(3): 701-711.]
doi: 10.11733/j.issn.1007-0435.2022.03.023 |
|
[46] | 顾娇, 毛莹儿, 李秀秀, 等. 杉木叶片、细根功能性状对毛竹扩张及伐除的响应[J]. 生态学报, 2023, 43(8): 3286-3294. |
[Gu Jiao, Mao Yinger, Li Xiuxiu, et al. Responses of leaf and fine root functional traits of Cunninghamia lanceolata to Phyllostachys expansion and removal[J]. Acta Ecologica Sinica, 2023, 43(8): 3286-3294.] | |
[47] | 王文新, 郭景唐, 陈峻崎. 华北落叶松各器官营养元素分布及季节变化[J]. 北京林业大学学报, 1992, 15(S5): 124-129. |
[Wang Wenxin, Guo Jingtang, Chen Junqi. Distributions and seasonal changes of nutrient elements contents in different organs of Larix principis-rupprechtii[J]. Journal of Beijing Forestry University, 1992, 15(S5): 124-129.] | |
[48] | 郑东辉, 马伟伟, 谢路路, 等. 青杨扦插苗生物量积累与分配对土壤水-氮有效性的短期响应及动态调整[J]. 应用与环境生物学报, 2022, 28(4): 1002-1011. |
[Zheng Donghui, Ma Weiwei, Xie Lulu, et al. Response of biomass accumulation and allocation in Populus cathayana cuttings to soil water and nitrogen availabilities and its dynamic adjustment[J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(4): 1002-1011.] |
[1] | 刘艺伟, 魏江生, 黄利东, 赵鹏武, 舒洋, 李慧敏, 曹立春, 张婷. 大兴安岭南段蒙古栎粗根非结构性碳对不同坡向的响应[J]. 干旱区研究, 2024, 41(9): 1572-1582. |
[2] | 张斌, 李从娟, 易光平, 刘冉. 梭梭和头状沙拐枣形态及生理生化特性对干旱胁迫的响应[J]. 干旱区研究, 2024, 41(7): 1177-1184. |
[3] | 孙法福, 赖宁, 耿庆龙, 李永福, 吕彩霞, 信会男, 李娜, 陈署晃. 基于无人机高光谱影像的冬小麦叶片氮浓度遥感估测[J]. 干旱区研究, 2024, 41(6): 1069-1078. |
[4] | 王勃, 张建军, 赖宗锐, 赵炯昌, 胡亚伟, 杨周, 李阳, 卫朝阳. 土壤含水量对探地雷达探测植物根系构型精度的影响[J]. 干旱区研究, 2024, 41(3): 456-466. |
[5] | 李敏, 孙杰, 陈雪, 刘佳庆. 荒漠植物叶片-土壤化学计量及植物内稳态特征[J]. 干旱区研究, 2024, 41(1): 104-113. |
[6] | 阿拉依·哈那提, 刘艳霞, 兰海燕. 荒漠植物表皮毛的凝结水形成及吸收机制研究进展[J]. 干旱区研究, 2024, 41(1): 114-123. |
[7] | 白炬, 刘晓林, 李申, 梁哲铭, 胥子航, 王永亮, 杨治平. 污泥热碱液对干旱胁迫下小青菜生长的缓解机制[J]. 干旱区研究, 2024, 41(1): 80-91. |
[8] | 周静,孙永峰,丁杰萍,白浩江,马祥,王旭洋,罗永清. 退化沙质草地恢复过程中植被生物量变化及其与土壤碳的关系[J]. 干旱区研究, 2023, 40(9): 1457-1464. |
[9] | 席昱欣, 张玉慧, 闻志彬. 松叶猪毛菜叶片原生质体的制备及优化[J]. 干旱区研究, 2023, 40(4): 655-662. |
[10] | 魏亚娟, 党晓宏, 汪季, 韩彦隆, 解云虎, 蔺博. 吉兰泰荒漠绿洲过渡带白刺灌丛沙堆形态示量特征[J]. 干旱区研究, 2023, 40(3): 403-411. |
[11] | 李瑞, 单立山, 解婷婷, 马丽, 杨洁, 李全刚. 典型荒漠灌木叶片功能性状特征随降水梯度的变化研究[J]. 干旱区研究, 2023, 40(3): 425-435. |
[12] | 毛正君,耿咪咪. 紫花苜蓿根系抗拉力学特性及其影响因素研究[J]. 干旱区研究, 2023, 40(2): 235-246. |
[13] | 徐梦琦, 高艳菊, 张志浩, 黄彩变, 曾凡江. 干旱胁迫对疏叶骆驼刺幼苗生长和生理的影响[J]. 干旱区研究, 2023, 40(2): 257-267. |
[14] | 郑欣如, 王树森, 王博, 张欣, 刘静, 胡晶华, 李诗文, 袁亚楠, 王丫博. 采煤沉陷区模拟土壤侵蚀胁迫对黑沙蒿生理生长特性的影响[J]. 干旱区研究, 2023, 40(11): 1806-1814. |
[15] | 王紫瑄, 解甜甜, 王雅茹, 杨杰艳, 杨秀清. 丛枝菌根真菌(AMF)对蒙古沙冬青幼苗的促生特性及作用机制[J]. 干旱区研究, 2023, 40(1): 78-89. |
|