干旱区研究 ›› 2025, Vol. 42 ›› Issue (10): 1802-1812.doi: 10.13866/j.azr.2025.10.05 cstr: 32277.14.AZR.20251005
收稿日期:2025-05-27
修回日期:2025-07-31
出版日期:2025-10-15
发布日期:2025-10-22
通讯作者:
隆霄. E-mail: longxiao@lzu.edu.cn作者简介:王雨恬(2002-),女,硕士研究生,主要从事中小尺度数值模拟研究. E-mail: wyutian2023@lzu.edu.cn
基金资助:
WANG Yutian(
), LONG Xiao(
), WANG Hao, CHEN Youao, MA Xingxing
Received:2025-05-27
Revised:2025-07-31
Published:2025-10-15
Online:2025-10-22
摘要:
降水是干旱半干旱地区土壤水分的主要来源,降水的准确预测对该地区水资源的有效利用和减灾防灾有指导意义。干旱与半干旱地区观测数据稀疏,且再分析资料在沙漠地区存在较大误差,共同导致了数值模式对该地区降水模拟能力的不足。为此,本文选取一次发生在腾格里沙漠的降水过程,通过同化探空资料来优化模式初始场中的降水大尺度背景场,并分析此方法对此次降水过程模拟效果的影响。结果表明:两次试验模拟的降水分布特征总体一致,与GPM观测结果相比都存在一定的偏差,同化探空资料后初始场中200 hPa南亚高压、500 hPa高空槽和高空急流等大尺度环流背景均有所增强,中尺度暖低压和水汽输送特征也得到一定程度的加强,为降水的形成和发展提供了更有利的条件。降水的TS及ETS评分有明显提高(分别提高了约0.1和0.08),降水最强时刻中尺度系统的动力和热力结构均有不同程度的增强,这些结果对改进沙漠地区降水预报提供了有益的科学参考。
王雨恬, 隆霄, 王号, 陈佑奥, 马星星. 基于同化探空资料的腾格里沙漠一次强降水过程分析[J]. 干旱区研究, 2025, 42(10): 1802-1812.
WANG Yutian, LONG Xiao, WANG Hao, CHEN Youao, MA Xingxing. Analysis of an intense precipitation process in the Tengger Desert based on sounding data assimilation[J]. Arid Zone Research, 2025, 42(10): 1802-1812.
| [1] | 王会军, 唐国利, 陈海山, 等. “一带一路”区域气候变化事实、影响及可能风险[J]. 大气科学学报, 2020, 43(1): 1-9. |
| [Wang Huijun, Tang Guoli, Chen Haishan, et al. The Belt and Road region climate change: Facts, impacts and possible risks[J]. Transactions of Atmospheric Science, 2020, 43(1): 1-9. ] | |
| [2] | 施雅风, 沈永平, 胡汝骥. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J]. 冰川冻土, 2002, 24(3): 219-226. |
| [Shi Yafeng, Shen Yongping, Hu Ruji. Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in Northwest China[J]. Journal of Glaciology and Geocryology, 2002, 24(3): 219-226. ] | |
| [3] | Wu M, Li Y, Hu W, et al. Spatiotemporal variability of standardized precipitation evapotranspiration index in the mainland of China over 1961-2016[J]. International Journal of Climatology, 2020, 40(11): 4781-4799. |
| [4] |
张红丽, 韩富强, 张良, 等. 西北地区气候暖湿化空间与季节差异分析[J]. 干旱区研究, 2023, 40(4): 517-531.
doi: 10.13866/j.azr.2023.04.01 |
|
[Zhang Hongli, Han Fuqiang, Zhang Liang, et al. Analysis of spatial and seasonal variations in climate warming and humidification in Northwest China[J]. Arid Zone Research, 2023, 40(4): 517-531. ]
doi: 10.13866/j.azr.2023.04.01 |
|
| [5] |
山建安, 朱睿, 尹振良, 等. 基于CMIP6模式的中国西北地区干旱时空变化[J]. 干旱区研究, 2024, 41(5): 717-729.
doi: 10.13866/j.azr.2024.05.01 |
|
[Shan Jian’an, Zhu Rui, Yin Zhenliang, et al. Spatial and temporal variation of drought in Northwest China based on CMIP6 model[J]. Arid Zone Research, 2024, 41(5): 717-729. ]
doi: 10.13866/j.azr.2024.05.01 |
|
| [6] | Ma Y, Ren J, Kang S, et al. Spatial-temporal dynamics of meteorological and agricultural drought in Northwest China: Propagation, drivers and prediction[J]. Journal of Hydrology, 2025, 650: 132492. |
| [7] | Xu F, Qu Y, Bento V A, et al. Understanding climate change impacts on drought in China over the 21st century: A multi-model assessment from CMIP6[J]. Climate and Atmospheric Science, 2024, 7(1): 32. |
| [8] | 李铭宇, 韩婷婷, 郝鑫. 欧亚大陆极端降水事件的区域变化特征[J]. 大气科学学报, 2020, 43(4): 687-698. |
| [Li Mingyu, Han Tingting, Hao Xin. Regional characteristics of extreme precipitation events in Eurasia[J]. Transactions of Atmospheric Science, 2020, 43(4): 687-698. ] | |
| [9] | Wang Y, Zhou B, Qin D, et al. Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection[J]. Advances in Atmospheric Sciences, 2017, 34(3): 289-305. |
| [10] |
丁一汇, 柳艳菊, 徐影, 等. 全球气候变化的区域响应:中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562.
doi: 10.11867/j.issn.1001-8166.2023.027 |
|
[Ding Yihui, Liu Yanju, Xu Ying, et al. Regional responses to global climate change: Progress and prospects for trend, causes, and projection of climatic warming-wetting in Northwest China[J]. Advances in Earth Science, 2023, 38(6): 551-562. ]
doi: 10.11867/j.issn.1001-8166.2023.027 |
|
| [11] |
李双双, 汪成博, 延军平, 等. 面向事件过程的秦岭南北极端降水时空变化特征[J]. 地理学报, 2020, 75(5): 989-1007.
doi: 10.11821/dlxb202005008 |
|
[Li Shuangshuang, Wang Chengbo, Yan Junping, et al. Variability of the event-based extreme precipitation in the south and north Qinling Mountains[J]. Acta Geographica Sinica, 2020, 75(5): 989-1007. ]
doi: 10.11821/dlxb202005008 |
|
| [12] | Pan L, Zhang H, Liu J, et al. Comparative analysis of SCMOC and models rainstorm forecasting performance in Qinling Mountains and their surrounding areas[J]. Atmosphere, 2022, 13(5): 705. |
| [13] |
刘嘉慧敏, 李明, 欧阳雨, 等. 秦岭北麓盛夏典型突发性降水过程中低层风特征[J]. 干旱气象, 2025, 43(1): 41-53.
doi: 10.11755/j.issn.1006-7639-2025-01-0041 |
| [Liu Jiahuimin, Li Ming, Ouyang Yu, et al. Characteristics of low-level wind during typical sudden precipitation processes at the northern foot of Qinling Mountains in midsummer[J]. Journal of Arid Meteorology, 2025, 43(1): 41-53. ] | |
| [14] | 李岩瑛, 张强, 许霞, 等. 祁连山及周边地区降水与地形的关系[J]. 冰川冻土, 2010, 32(1): 52-61. |
| [Li Yanying, Zhang Qiang, Xu Xia, et al. Relationship between precipitation and terrain over the Qilian Mountains and their ambient areas[J]. Journal of Glaciology and Geocryology, 2010, 32(1): 52-61. ] | |
| [15] |
刘雪梅, 张明军, 王圣杰, 等. 2008—2014年祁连山区夏季降水的日变化特征及其影响因素[J]. 地理学报, 2016, 71(5): 754-767.
doi: 10.11821/dlxb201605005 |
|
[Liu Xuemei, Zhang Mingjun, Wang Shengjie, et al. Diurnal variation of summer precipitation and its influencing factors of the Qilian Mountains during 2008-2014[J]. Acta Geographica Sinica, 2016, 71(5): 754-767. ]
doi: 10.11821/dlxb201605005 |
|
| [16] |
付双喜, 王伏村, 李宝梓, 等. 祁连山北坡一次秋季对流性降水雨滴谱特征分析[J]. 干旱区研究, 2024, 41(10): 1615-1626.
doi: 10.13866/j.azr.2024.10.01 |
|
[Fu Shuangxi, Wang Fucun, Li Baozi, et al. Raindrop spectral characteristics of an autumn convective precipitation on the north slope of the Qilian Mountains[J]. Arid Zone Research, 2024, 41(10): 1615-1626. ]
doi: 10.13866/j.azr.2024.10.01 |
|
| [17] | 郑度, 潘裕生, 武素功, 等. 昆仑山区综合科学考察的新进展[J]. 山地研究, 1989, 7(2): 111-115. |
| [Zheng Du, Pan Yusheng, Wu Sugong, et al. Recent progresses of the integrated scientific expedition to the Kunlun Mountains[J]. Mountain Research, 1989, 7(2): 111-115. ] | |
| [18] | Duan Yongchao, Liu Tie, Meng Fanhao, et al. Accurate simulation of ice and snow runoff for the mountainous terrain of the Kunlun Mountains, China[J]. Remote Sensing, 2020, 12(1): 179. |
| [19] |
杨霞, 杨柳. 昆仑山北坡西段和中段暴雨的特征及差异[J]. 干旱区研究, 2025, 42(2): 202-211.
doi: 10.13866/j.azr.2025.02.02 |
|
[Yang Xia, Yang Liu. Characteristics and differences in heavy rainfall in the western and central sections of the northern slope of the Kunlun Mountains[J]. Arid Zone Research, 2025, 42(2): 202-211. ]
doi: 10.13866/j.azr.2025.02.02 |
|
| [20] |
郭玉娣, 徐祥德, 陈渭民, 等. “鱼尾”状地形热力效应对天山降水系统及水资源的影响[J]. 高原气象, 2014, 33(5): 1363-1373.
doi: 10.7522/j.issn.1000-0534.2013.00120 |
|
[Guo Yudi, Xu Xiangde, Chen Weimin, et al. Heat source over “Fishtail” type topography effects on Tianshan Mountain regions precipitation systems and water resources[J]. Plateau Meteorology, 2014, 33(5): 1363-1373. ]
doi: 10.7522/j.issn.1000-0534.2013.00120 |
|
| [21] | 喻雪晴, 穆振侠, 周育琳. 不同降水降尺度方法在天山西部区域的适用性评估[J]. 中国农村水利水电, 2020(10): 21-28. |
| [Yu Xueqing, Mu Zhenxia, Zhou Yulin. An assessment of different precipitation downscaling methods in the western Tianshan Mountains[J]. China Rural Water and Hydropower, 2020(10): 21-28. ] | |
| [22] | 李慧, 杨涛, 何祺胜, 等. 新疆天山山区TRMM卫星降水数据的复合校正方法[J]. 干旱区研究, 2017, 34(3): 585-590. |
| [Li Hui, Yang Tao, He Qisheng, et al. Composite correction method of TRMM satellite precipitation data in the Tianshan Mountains, Xinjiang[J]. Arid Zone Research, 2017, 34(3): 585-590. ] | |
| [23] | Chen Y, Li J, Li X, et al. Spatio-temporal distribution of the rainstorm in the east side of the Helan Mountain and the possible causes of its variability[J]. Atmospheric Research, 2021, 252: 105469. |
| [24] |
李超, 隆霄, 曹怡清, 等. 不同风场结构下贺兰山地形降水的理想数值试验[J]. 干旱区研究, 2024, 41(8): 1272-1287.
doi: 10.13866/j.azr.2024.08.02 |
|
[Li Chao, Long Xiao, Cao Yiqing, et al. Ideal numerical tests of topographic precipitation around the Helan Mountain under different wind field structures[J]. Arid Zone Research, 2024, 41(8): 1272-1287. ]
doi: 10.13866/j.azr.2024.08.02 |
|
| [25] | 张晓茹, 纪晓玲, 张亚刚, 等. 贺兰山不同区域暴雨过程水汽输送特征[J]. 气象, 2025, 51(3): 285-297. |
| [Zhang Xiaoru, Ji Xiaoling, Zhang Yagang, et al. Water vapor transport characteristics during rainstorms in different regions of Helan Mountains[J]. Meteorological Monthly, 2025, 51(3): 285-297. ] | |
| [26] | 王树舟, 于恩涛. 基于MIROC/WRF嵌套模式的中国气候降尺度模拟[J]. 气候与环境研究, 2013, 18(6): 681-692. |
| [Wang Shuzhou, Yu Entao. Dynamical downscaling simulation over China using the nested MIROC/WRF model[J]. Climatic and Environmental Research, 2013, 18(6): 681-692. ] | |
| [27] |
袁有林, 左洪超, 董龙翔, 等. 地形和水汽对“7.13”陕西暴雨影响的数值试验[J]. 干旱气象, 2015, 33(2): 291-302.
doi: 10.11755/j.issn.1006-7639(2015)-02-0291 |
| [Yuan Youlin, Zuo Hongchao, Dong Longxiang, et al. Numerical simulation of the effect of elevation and water vapor on “7.13” rainstorm in Shaanxi Province[J]. Journal of Arid Meteorology, 2015, 33(2): 291-302. ] | |
| [28] | Airey M W, Nicoll K A, Harrison R G, et al. Characteristics of desert precipitation in the UAE derived from a ceilometer dataset[J]. Atmosphere, 2021, 12(10): 1245. |
| [29] | Ma Yufen, Li Ruqi, Zhang Men, et al. Validation of AIRS-Retrieved atmospheric temperature data over the Taklimakan Desert[J]. Sciences in Cold and Arid Regions, 2020, 12(4): 242-251. |
| [30] | Ma Y, Liu J, Mamtimin A, et al. Validation of FY-4A temperature profiles by radiosonde observations in Taklimakan Desert in China[J]. Remote Sensing, 2023, 15(11): 2925. |
| [31] | 朱岩. 腾格里沙漠暴雨特征分析和数值模拟研究[D]. 兰州: 兰州大学, 2015. |
| [Zhu Yan. Characteristics of Rainstorm in Tengger Desert and Numerical Simulation[D]. Lanzhou: Lanzhou University, 2015. ] | |
| [32] | 朱丰, 徐国强, 李莉, 等. 同化青藏高原地区GPSPW数据对长江中下游地区降水预报的影响评估[J]. 大气科学, 2014, 38(1): 171-189. |
| [Zhu Feng, Xu Guoqiang, Li Li, et al. An assessment of the impact on precipitation prediction in the middle and lower reaches of the Yangtze River made by assimilating GPSPW data in the Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(1): 171-189. ] | |
| [33] | 王雨, 闫之辉. 降水检验方案变化对降水检验评估效果的影响分析[J]. 气象, 2007(12): 53-61. |
| [Wang Yu, Yan Zhihui. Effect of different verification schemes on precipitation verification and assessment conclusion[J]. Meteorological Monthly, 2007(12): 53-61. ] | |
| [34] |
潘留杰, 张宏芳, 祁春娟, 等. 一个基于潜在影响的降水预报评分方法[J]. 高原气象, 2025, 44(3): 733-746.
doi: 10.7522/j.issn.1000-0534.2024.00084 |
|
[Pan Liujie, Zhang Hongfang, Qi Chunjuan, et al. A precipitation forecast score based on potential impact[J]. Plateau Meteorology, 2025, 44(3): 733-746. ]
doi: 10.7522/j.issn.1000-0534.2024.00084 |
|
| [35] |
马申佳, 陈超辉, 何宏让, 等. 基于BGM的对流尺度集合预报试验及其检验[J]. 高原气象, 2018, 37(2): 495-504.
doi: 10.7522/j.issn.1000-0534.2017.00073 |
|
[Ma Shenjia, Chen Chaohui, He Hongrang, et al. Experiment and verification of the convective-scale ensemble forecast based on BGM[J]. Plateau Meteorology, 2018, 37(2): 495-504. ]
doi: 10.7522/j.issn.1000-0534.2017.00073 |
|
| [36] |
Skofronick-Jackson G, Petersen W A, Berg W, et al. The Global Precipitation Measurement (GPM) mission for science and society[J]. Bulletin of the American Meteorological Society, 2017, 98(8): 1679-1695.
doi: 10.1175/BAMS-D-15-00306.1 pmid: 31359880 |
| [37] | 王号, 隆霄, 王雨恬, 等. GPM降水资料在祁连山地区的适用性分析[J]. 沙漠与绿洲气象, 2025, 19(3): 104-112. |
| [Wang Hao, Long Xiao, Wang Yutian, et al. Analysis of the applicability of GPM precipitation data in Qilian Mountains[J]. Desert and Oasis Meteorology, 2025, 19(3): 104-112. ] | |
| [38] |
王思梦, 王大钊, 黄昌. GPM卫星降水数据在黑河流域的适用性评价[J]. 自然资源学报, 2018, 33(10): 1847-1860.
doi: 10.31497/zrzyxb.20171180 |
|
[Wang Simeng, Wang Dazhao, Huang Chang. Evaluating the applicability of GPM satellite precipitation data in Heihe River Basin[J]. Journal of Natural Resources, 2018, 33(10): 1847-1860. ]
doi: 10.31497/zrzyxb.20171180 |
|
| [39] | 韩子霏. 贺兰山一次极端暴雨个例的数值模拟及局地环流的影响机制研究[D]. 兰州: 兰州大学, 2021. |
| [Han Zifei. Simulation Studies on an Extreme Rainstorm and the Effects of the Local Mountain-Valley Wind around the Helan Mountain[D]. Lanzhou: Lanzhou University, 2021. ] | |
| [40] | Arakawa A, Jung J H. Multiscale modeling of the moist-convective atmosphere—A review[J]. Atmospheric research, 2011, 102(3): 263-285. |
| [41] |
张飞民, 王澄海. 利用WRF-3DVAR同化常规观测资料对近地层风速预报的改进试验[J]. 高原气象, 2014, 33(3): 675-685.
doi: 10.7522/j.issn.1000-0534.2012.00198 |
|
[Zhang Feimin, Wang Chenghai. Experiment of surface-layer wind forecast improvement by assimilating conventional data with WRF -3DVAR[J]. Plateau Meteorology, 2014, 33(3): 675-685. ]
doi: 10.7522/j.issn.1000-0534.2012.00198 |
|
| [42] | 孟晓文, 隆霄, 周国兵, 等. 同化常规资料对重庆地区一次大暴雨过程的数值模拟研究[J]. 暴雨灾害, 2017, 36(4): 309-318. |
| [Meng Xiaowen, Long Xiao, Zhou Guobing, et al. Numerical simulation analysis on conventional data assimilation for a rainstorm in Chongqing[J]. Torrential Rain and Disasters, 2017, 36(4): 309-318. ] | |
| [43] | Niu D, Li Y, Wang H, et al. FsrGAN: A satellite and radar-based fusion prediction network for precipitation nowcasting[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 7002-7013. |
| [44] | 崔园园. CMA陆面数据同化系统产品在青藏高原及其周边的适用性评估[D]. 南京: 南京信息工程大学, 2018. |
| [Cui Yuanyuan. Evaluation on the Products of CMA Land Data Assimiltion System around Qinghai-Tibeat Plateau[D]. Nanjing: Nanjing University of Information Science and Technology, 2018. ] | |
| [45] | 刘玉宝, 丁秋冀, 史月琴, 等. 云解析人工影响天气数值模式的改进、初步试验和展望[J]. 气象科技进展, 2021, 11(5): 77-85. |
| [Liu Yubao, Ding Qiuji, Shi Yueqin, et al. Development of a cloud-resolvable weather modification model: Model description, preliminary results and challenges[J]. Advances in Meteorological Science and Technology, 2021, 11(5): 77-85. ] |
| [1] | 王新刚, 尹翔, 谢龙至, 张效俊, 童江峰, 谭靖. 两种结构高立式芦苇沙障防沙效能探究及应用优化[J]. 干旱区研究, 2025, 42(8): 1514-1524. |
| [2] | 范严伟, 吕自杰, 张尧, 王磊, 石雯. 竖管地表滴灌土壤水热分布特征模拟及影响因素[J]. 干旱区研究, 2025, 42(6): 1138-1150. |
| [3] | 霍斌昱, 郭本泓, 刘成英, 徐恒明, 蒋宇强. 腾格里沙漠表土磁化率的指示意义[J]. 干旱区研究, 2025, 42(4): 613-621. |
| [4] | 樊昊, 唐国栋, 赵振宇, 李锦荣, 邓春涛, 王海兵. 腾格里沙漠东北缘飞播30 a人工林土壤养分特征[J]. 干旱区研究, 2025, 42(4): 637-645. |
| [5] | 王浩, 李生宇, 王海峰, 范敬龙, 崔珂军. 沙漠光伏电站地表蚀积发生机制实验研究[J]. 干旱区研究, 2025, 42(2): 349-359. |
| [6] | 曹译丹, 马敏劲, 康国强, 陈然. 西北一次强沙尘天气的数值模拟及其诊断[J]. 干旱区研究, 2025, 42(1): 1-13. |
| [7] | 夏天, 李生宇, 张璟, 崔珂军. 风沙区涵洞翼墙类型对风沙流输移影响的数值模拟[J]. 干旱区研究, 2024, 41(12): 2154-2165. |
| [8] | 刘洋, 尹忠东, 闫晴, 张彩荣. 琵琶柴的防风固沙作用数值模拟[J]. 干旱区研究, 2024, 41(11): 1887-1897. |
| [9] | 闫晴, 李菊艳, 尹忠东, 刘金苗, 柳宏才. 典型株型沙生灌丛对风沙流场影响的数值模拟[J]. 干旱区研究, 2023, 40(5): 785-797. |
| [10] | 张天意, 刘杰, 杨治纬, 王斌, 程秋连. 基于空-地协同调查的西天山阿尔先沟雪崩过程数值模拟[J]. 干旱区研究, 2023, 40(11): 1729-1743. |
| [11] | 薛承杰, 张克存, 安志山, 张宏雪, 潘加朋. 铁路高架桥对局地风动力的影响——以敦格铁路沙山沟为例[J]. 干旱区研究, 2023, 40(10): 1678-1686. |
| [12] | 曹怡清,隆霄,李超,王思懿,赵建华. 低空急流对贺兰山东麓两次暴雨影响的数值模拟研究[J]. 干旱区研究, 2022, 39(6): 1739-1752. |
| [13] | 刘金苗,李菊艳,尹忠东,关含笑,张家伟. 干枯骆驼刺对风沙流场影响的数值模拟研究[J]. 干旱区研究, 2022, 39(5): 1514-1525. |
| [14] | 尚佳州,赵瑜琦,王卫锋,高钿惠,宗毓铮. 干旱对碧玉杨幼苗水氮利用与同化物分配的影响[J]. 干旱区研究, 2022, 39(3): 893-899. |
| [15] | 周宏. 基于多入渗模型的荒漠砂质土壤积水入渗模拟对比[J]. 干旱区研究, 2022, 39(1): 123-134. |
|
||